
AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

i

AltaAPI™
Software User’s Manual

Part Number: 14301-00000-I4
Cage Code: 4RK27 ● NAICS: 334118

Alta Data Technologies LLC

4901 Rockaway Blvd, Building A
Rio Rancho, NM 87124 USA

(tel) 505-994-3111 ● www.altadt.com

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

ii

CUSTOMER NOTES:

Document Information:
Alta Software Version: 2.6.5.0
Rev I4 Release Date: November 10, 2014

Note to the Reader and End-User:
This document is provided for information only and is copyright by © Alta Data Technologies LLC.
While Alta strives to provide the most accurate information, there may be errors and omissions in
this document. Alta disclaims all liability in document errors and any product usage. By using an
Alta product, the customer or end user agrees (1) to accept Alta’s Standard Terms and
Conditions of Sale, Standard Warranty and Software License and (2) to not hold Alta Members,
Employees, Contractors or Sales & Support Representatives responsible for any loss or legal
liability, tangible or intangible, from any document errors or any product usage.

The product described in this document is not US ITAR controlled. Use of Alta products or
documentation in violation of local usage, waste discard and export control rules, or in violation of
US ITAR regulations, voids product warranty and shall not be supported. This document may be
distributed to support government programs and projects. Third party person, company or
consultant distribution is not allowed without Alta’s written permission.

AltaCore, AltaCore-1553, AltaCore-ARINC, AltaAPI, AltaAPI-LV, AltaView, AltaRTVal, ENET-
1553, ENET-A429 & ENET-1553-EBR are Trademarks of Alta Data Technologies LLC, Rio
Rancho, New Mexico USA

Contact:
We welcome comments and suggestions. Please contact us at 888-429-1553 (toll free in US) or
505-994-3111 or visit our web site for support submit forms at www.altadt.com or email us at
alta.info@altadt.com or alta.support@altadt.com.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

iii

Table of Contents
Table of Contents ... iii

The AltaAPI Software Model ... 1

Layer 0 API Modules ... 3

Layer 1 API Module ... 4

Layer 2 API Modules ... 5

List of Acronyms .. 6

The Layer 0 API .. 8

Layer 0 API Constants .. 8

The Device Identifier (Device ID – or DEVID).. 9

#Define Device ID Examples for Layer 1 Programs (from ADT_L0.h): 11

Layer 0 API Files ... 12

Layer 0 API Type Definitions ... 12

ADT_L0_UINT32 ... 12

ADT_L0_UINT16 ... 12

ADT_L0_UINT8 ... 12

Error Code Constants .. 13

Low Level Functions .. 14

ADT_L0_AttachIntHandler ... 14

ADT_L0_DetachIntHandler .. 14

ADT_L0_MapMemory ... 15

ADT_L0_MapMemory_pciInfo .. 16

ADT_L0_UnmapMemory ... 16

ADT_L0_msSleep ... 17

ADT_L0_ReadMem16 .. 17

ADT_L0_ReadMem32 .. 18

ADT_L0_ReadSetupMem32 .. 18

ADT_L0_WriteMem16 ... 19

ADT_L0_WriteMem32 ... 19

ADT_L0_WriteSetupMem32 ... 20

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

iv

ADT_L0_ENET_ADCP_Reset .. 20

ADT_L0_ENET_ADCP_GetStatistics ... 21

ADT_L0_ENET_ADCP_ClearStatistics ... 21

The Layer 1 API .. 23

Channels & Devices – Basic Definition Reviewed 24

Table Layer 1 API - 1: ARINC/A429 Device ID (DEVID) Bank Channel Assignments 25

Common Layer 1 API Functions & Discussion .. 26

ADT_L1.h File & 1553 or ARINC Quick Reference Guides 26

Basic Data Types .. 26

Data Structures .. 27

General Programming Flow ... 27

Initializing and Closing the API .. 28

Advanced Concepts on Device Initialization ... 28

Closing the Device – Last Step of an Application... 29

Memory Management .. 29

Multi-Threaded Applications ... 30

Built-In-Test (BIT) Operation .. 31

Power-On Self Test .. 31

Initiated BIT ... 31

Periodic BIT .. 31

BIT Status Register ... 31

Using IRIG-B Time ... 32

IRIG Calibration .. 32

Verifying IRIG Lock ... 32

Reading the IRIG time from the Global Device.. 33

Reading the LATCHED IRIG and Internal Time from a 1553/A429 Device 33

Converting Internal Time-Stamps to IRIG Time ... 34

ENET Device and Software Overview ... 35

ENET Device Programming: ADCP .. 36

Alta Passive Monitor Protocol (APMP) .. 37

AltaAPI and ENET Programming .. 38

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

v

Assigning IP Addresses .. 38

Initialize the Device ... 38

Checking the ADCP Connection Status .. 38

System and Network Performance with ENET Devices ... 39

ENET Performance .. 41

ENET Ethernet UDP Protocols .. 42

ALTA DEVICE CONTROL PROTOCOL (ADCP) .. 42

UDP Port Numbers .. 44

ADCP Packet Format .. 44

Auto 1553/ARINC Ethernet BM/RX Bridging: ALTA PASSIVE MONITOR
PROTOCOL (APMP) ... 47

UDP Port Numbers .. 47

APMP Packet Format ... 48

APMP 1553 CDP Packet Format - CDP ... 50

How to Start/Control 1553 APMP ... 50

ARINC APMP Packet Format .. 52

How to Start/Control ARINC APMP .. 53

MIL-STD-1553 Layer 1 Programming ... 55

1553 (M1553) Device & Protocol Initialization & Closing 57

Advance 1553 Initialization Options – Manual Device & Protocol Setup (1553A and Other
Non 1553B Variants). ... 59

“RT Live” Initialization – MIL-STD-1760 Startup .. 59

Closing the Device – Last Step of an Application... 60

Overview of MIL-STD-1553 Functions ... 60

The 1553 Common Data Packet (CDP) ... 60

Error Injection/Detection for Data Words of BC or RT Messages 63

Setting Message (CDP) Interrupts, Triggers, etc… ... 64

1553 Bus Monitor Operation .. 65

Figure BM-1: Basic Programming Flow ... 65

BM Filters ... 66

BM Buffer (CDP) Allocation ... 67

BM Control Functions .. 68

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

vi

BM Message Read Functions... 68

1553 Remote Terminal Operation .. 69

Figure RT-1: Basic RT Programming Flow .. 69

RT Initialization .. 70

Single RT and Multiple RT Configurations ... 71

BROADCAST Messages – Single RT and Multiple RT ... 72

Allocating and Managing RT/SA and Mode Code Buffers (CDPs)...................................... 72

RT Command Legalization ... 73

RT Status and Last Command Words .. 73

RT Status Response Time... 74

Error Injection on the RT Status Word .. 74

RT Control Functions ... 74

1553 Bus Controller (BC) Operation .. 75

Figure BC-1: Basic BC Programming Flow .. 75

Figure BC-2: BCCB Data Structure ... 78

BC Initialization .. 79

Allocating BC Control Blocks (BCCB) and CDP Buffers ... 79

Reading and Writing BC Data (and reviewing message results) 80

Defining BC Messages (1553 Message Types) ... 80

BC-RT ... 81

RT-BC ... 82

RT-RT.. 82

Mode Codes without Data .. 82

Mode Codes with Data .. 83

Broadcast BC-RT .. 83

Broadcast RT-RT .. 84

Broadcast Mode Codes without Data ... 84

Broadcast Mode Codes with Data ... 84

Non Transmitting BC Message Types: NOPs, Delays & Branches 85

BC Branching – Best Method ... 85

NO Operation (NOP) and Delay Only BC Message Types .. 86

Disabling and Enabling BC Messages (NOP) & Delay Only Message Type 86

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

vii

Note on Inter-Message Gap time & Frame Message Scheduling 86

Starting and Stopping the BC & Synchronizing Stop ... 86

BC Frame Operation .. 87

Note on Inter-Message Gap time & Frame Message Scheduling 89

Advanced BC Frame Operation ... 89

Aperiodic Messages ... 91

BC Retry Operation .. 92

Error Injection on Command Words ... 92

1553 Playback Operation .. 93

Playback Relative verses Absolute (AT) Time Options .. 95

Playback Start/Stop Control Functions .. 96

1553 Signal Generator Operation .. 97

SG Start/Stop Control Functions ... 98

Signal Capture ... 98

1553 Device Interrupts ... 99

The Interrupt Queue .. 99

General Device Interrupt Functions .. 101

1553 Device Interrupt Functions ... 102

RT Interrupt Info Word .. 103

BC Interrupts ... 104

BCCB Complete verses BCCB CDP Interrupt .. 104

BM CDP Interrupt Info Word ... 105

ARINC 429 Device Operation.. 106

A429 Device Initialization Functions .. 106

A429 Channel Configuration ... 107

Closing the ARINC Device .. 108

A429 Receive (RX) Operation ... 109

Receive Channel Operation ... 110

Multichannel Receive Operation ... 111

Figure ARINC-RX-1: Basic Flow for Channel Level RX .. 112

Label LSB/MSB for ARINC-429 RXPs and TXPs ... 114

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

viii

A429 Transmit (TX) Operation ... 115

Figure ARINC-TX-1: Basic TX Scheduling API Flow ... 118

Sending Aperiodic TXCB/TXP Label Lists ... 120

Label LSB/MSB for ARINC-429 RXPs and TXPs ... 121

A429 Playback Operation .. 122

Playback Relative verses Absolute (AT) Time Options .. 124

Playback Start/Stop Control Functions .. 125

A429 Signal Generator Operation .. 126

SG Start/Stop Control Functions ... 127

A429 Device Interrupt Functions .. 128

Other ARINC Setup & Usage (ARINC 717) ... 130

Layer 1 API Files ... 132

Layer 1 Example Programs ... 132

Layer 1 API – Key Type Definitions ... 133

ADT_L1_1553_CDP .. 133

ADT_L1_1553_BC_CB .. 133

ADT_L1_A429_RXP .. 134

ADT_L1_A429_TXP .. 134

Label LSB/MSB for ARINC-429 RXPs and TXPs ... 134

ADT_L1_A429_TXCB .. 135

Layer 1 API Constants .. 136

Error Code Constants .. 136

Layer 1 API Functions ... 137

General Functions ... 137

ADT_L1_DevicePresent ... 137

ADT_L1_DevicePresent_pciInfo .. 138

ADT_L1_InitDevice .. 139

ADT_L1_CloseDevice ... 140

ADT_L1_GetBoardInfo ... 141

ADT_L1_GetVersionInfo .. 142

ADT_L1_ProgramBoardFlash ... 143

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

ix

ADT_L1_ReadDeviceMem32 ... 143

ADT_L1_WriteDeviceMem32 .. 144

ADT_L1_msSleep ... 144

ADT_L1_ENET_SetIpAddr .. 145

ADT_L1_ENET_GetIpAddr ... 146

ADT_L1_ENET_ADCP_Reset .. 146

ADT_L1_ENET_ADCP_GetStatistics ... 147

ADT_L1_ENET_ADCP_ClearStatistics ... 147

ADT_L1_Error_to_String.. 148

Board Global Functions ... 149

ADT_L1_Global_TimeClear .. 149

ADT_L1_Global_ConfigExtClk .. 149

ADT_L1_Global_I2C_ReadTemp .. 150

ADT_L1_Global_I2C_SetIrigDac ... 150

ADT_L1_Global_I2C_SetVVDac ... 151

ADT_L1_Global_CalibrateIrigDac .. 151

ADT_L1_Global_CalibrateIrigDacOptions .. 152

ADT_L1_Global_ReadIrigTime ... 153

Memory Management Functions ... 154

ADT_L1_InitMemMgmt ... 154

ADT_L1_CloseMemMgmt.. 154

ADT_L1_GetMemoryAvailable .. 155

ADT_L1_MemoryAlloc ... 155

ADT_L1_MemoryFree.. 156

BIT Functions ... 157

ADT_L1_BIT_MemoryTest ... 157

ADT_L1_BIT_InitiatedBIT ... 158

ADT_L1_BIT_PeriodicBIT ... 158

Interrupt Functions ... 159

ADT_L1_INT_HandlerAttach .. 159

ADT_L1_INT_HandlerDetach ... 159

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

x

1553 General Functions .. 161

ADT_L1_1553_InitDefault ... 161

ADT_L1_1553_InitDefault_ExtendedOptions ... 162

ADT_L1_1553_GetConfig .. 164

ADT_L1_1553_GetPEInfo .. 165

ADT_L1_1553_InitChannel .. 165

ADT_L1_1553_InitChannelLive .. 166

ADT_L1_1553_SetConfig ... 167

ADT_L1_1553_TimeClear .. 168

ADT_L1_1553_TimeGet ... 168

ADT_L1_1553_TimeSet ... 169

ADT_L1_1553_IrigLatchedTimeGet ... 170

ADT_L1_1553_PBTimeGet .. 171

ADT_L1_1553_PBTimeSet ... 171

ADT_L1_1553_UseExtClk ... 172

ADT_L1_1553_ForceTrgOut .. 172

ADT_L1_1553_SC_ArmTrigger .. 173

ADT_L1_1553_SC_ReadBuffer .. 173

ADT_L1_1553_CDP_Calculate_1760_Checksum .. 174

ADT_L1_1553_IntervalTimerGet ... 175

ADT_L1_1553_IntervalTimerSet.. 176

1553 Interrupt Functions .. 177

ADT_L1_1553_INT_CheckChannelIntPending... 177

ADT_L1_1553_INT_DisableInt ... 177

ADT_L1_1553_INT_EnableInt .. 178

ADT_L1_1553_INT_GenInt .. 178

ADT_L1_1553_INT_GetIntSeqNum ... 178

ADT_L1_1553_INT_IQ_ReadEntry ... 179

ADT_L1_1553_INT_IQ_ReadNewEntries ... 180

ADT_L1_1553_INT_IQ_ReadRawEntry .. 181

ADT_L1_1553_INT_IQ_ReadNewRawEntries .. 182

ADT_L1_1553_INT_SetIntSeqNum .. 183

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xi

1553 Bus Monitor Functions .. 184

ADT_L1_1553_BM_BufferCreate .. 184

ADT_L1_1553_BM_BufferFree .. 184

ADT_L1_1553_BM_CDPRead .. 185

ADT_L1_1553_BM_CDPWrite ... 185

ADT_L1_1553_BM_Clear ... 186

ADT_L1_1553_BM_Config ... 186

ADT_L1_1553_BM_FilterRead .. 187

ADT_L1_1553_BM_FilterWrite ... 187

ADT_L1_1553_BM_ReadNewMsgs ... 188

ADT_L1_1553_BM_ReadNewMsgsDMA ... 188

ADT_L1_1553_BM_Start ... 189

ADT_L1_1553_BM_Stop .. 189

1553 Remote Terminal Functions .. 191

ADT_L1_1553_RT_Close .. 191

ADT_L1_1553_RT_Disable ... 191

ADT_L1_1553_RT_Enable ... 192

ADT_L1_1553_RT_GetExternalRTAddr ... 192

ADT_L1_1553_RT_GetLastCmd ... 193

ADT_L1_1553_RT_GetOptions .. 193

ADT_L1_1553_RT_GetRespTime ... 194

ADT_L1_1553_RT_GetSingleRTAddr ... 194

ADT_L1_1553_RT_Init ... 195

ADT_L1_1553_RT_InjStsWordError .. 195

ADT_L1_1553_RT_MC_CDPAllocate ... 196

ADT_L1_1553_RT_MC_CDPFree ... 196

ADT_L1_1553_RT_MC_CDPRead .. 197

ADT_L1_1553_RT_MC_CDPReadWords ... 198

ADT_L1_1553_RT_MC_CDPWrite ... 199

ADT_L1_1553_RT_MC_CDPWriteWords .. 200

ADT_L1_1553_RT_MC_LegalizationRead .. 201

ADT_L1_1553_RT_MC_LegalizationWrite ... 202

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xii

ADT_L1_1553_RT_Monitor ... 203

ADT_L1_1553_RT_ReadStsWordError .. 204

ADT_L1_1553_RT_SA_CDPAllocate... 205

ADT_L1_1553_RT_SA_CDPFree .. 205

ADT_L1_1553_RT_SA_CDPRead.. 206

ADT_L1_1553_RT_SA_CDPReadWords ... 207

ADT_L1_1553_RT_SA_CDPWrite .. 208

ADT_L1_1553_RT_SA_CDPWriteWords .. 209

ADT_L1_1553_RT_SA_LegalizationRead ... 210

ADT_L1_1553_RT_SA_LegalizationWrite .. 211

ADT_L1_1553_RT_SetOptions ... 212

ADT_L1_1553_RT_SetRespTime ... 212

ADT_L1_1553_RT_SetSingleRTAddr .. 213

ADT_L1_1553_RT_Start ... 213

ADT_L1_1553_RT_StatusRead .. 214

ADT_L1_1553_RT_StatusWrite ... 214

ADT_L1_1553_RT_Stop ... 215

1553 Bus Controller Functions ... 217

ADT_L1_1553_BC_AperiodicIsRunning ... 217

ADT_L1_1553_BC_AperiodicSend ... 218

ADT_L1_1553_BC_CB_CDPAllocate .. 219

ADT_L1_1553_BC_CB_CDPFree .. 219

ADT_L1_1553_BC_CB_CDPRead ... 220

ADT_L1_1553_BC_CB_CDPReadWords... 221

ADT_L1_1553_BC_CB_CDPWrite .. 222

ADT_L1_1553_BC_CB_CDPWriteWords ... 223

ADT_L1_1553_BC_CB_Read .. 224

ADT_L1_1553_BC_CB_ReadWords ... 225

ADT_L1_1553_BC_CB_Write ... 226

ADT_L1_1553_BC_CB_WriteWords .. 227

ADT_L1_1553_BC_CB_SetAddressBranchValues .. 228

ADT_L1_1553_BC_Close .. 229

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xiii

ADT_L1_1553_BC_GetFrameCount .. 230

ADT_L1_1553_BC_Init ... 230

ADT_L1_1553_BC_InjCmdWordError ... 231

ADT_L1_1553_BC_IsRunning .. 232

ADT_L1_1553_BC_ReadCmdWordError ... 233

ADT_L1_1553_BC_Start .. 234

ADT_L1_1553_BC_Stop ... 234

1553 Signal Generator Functions .. 235

ADT_L1_1553_SG_AddVectors ... 235

ADT_L1_1553_SG_Configure .. 235

ADT_L1_1553_SG_CreateSGCB ... 236

ADT_L1_1553_SG_Free ... 236

ADT_L1_1553_SG_Start .. 237

ADT_L1_1553_SG_Stop ... 237

ADT_L1_1553_SG_IsRunning .. 237

ADT_L1_1553_SG_WordToVectors ... 238

1553 Playback Functions ... 239

ADT_L1_1553_PB_Allocate ... 239

ADT_L1_1553_PB_CDPWrite .. 239

ADT_L1_1553_PB_Free ... 240

ADT_L1_1553_PB_GetRtResponse ... 240

ADT_L1_1553_PB_IsRunning .. 241

ADT_L1_1553_PB_SetRtResponse .. 241

ADT_L1_1553_PB_Start... 241

ADT_L1_1553_PB_Stop ... 242

A429 General Functions .. 242

ADT_L1_A429_InitDefault ... 242

ADT_L1_A429_InitDefault_ExtendedOptions ... 243

ADT_L1_A429_InitDevice .. 245

ADT_L1_A429_GetConfig .. 246

ADT_L1_A429_GetPEInfo .. 246

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xiv

ADT_L1_A429_TimeClear .. 247

ADT_L1_A429_UseExtClk .. 247

ADT_L1_A429_TimeGet .. 248

ADT_L1_A429_TimeSet ... 248

ADT_L1_A429_IrigLatchedTimeGet .. 249

ADT_L1_A429_PBTimeGet .. 250

ADT_L1_A429_PBTimeSet ... 250

ADT_L1_A429_SC_ArmTrigger .. 251

ADT_L1_A429_SC_ReadBuffer .. 251

ADT_L1_A429_IntervalTimerGet ... 252

ADT_L1_A429_IntervalTimerSet ... 253

A429 Interrupt Functions ... 254

ADT_L1_A429_INT_CheckChannelIntPending .. 254

ADT_L1_A429_INT_DisableInt .. 254

ADT_L1_A429_INT_EnableInt ... 255

ADT_L1_A429_INT_GetIntSeqNum ... 255

ADT_L1_A429_INT_IQ_ReadEntry .. 256

ADT_L1_A429_INT_IQ_ReadNewEntries .. 257

ADT_L1_A429_INT_IQ_ReadRawEntry ... 258

ADT_L1_A429_INT_IQ_ReadNewRawEntries ... 259

ADT_L1_A429_INT_SetIntSeqNum ... 260

A429 Multichannel Receive Functions ... 261

ADT_L1_A429_RXMC_BufferCreate .. 261

ADT_L1_A429_RXMC_BufferFree ... 261

ADT_L1_ A429_RXMC_ReadNewRxPs... 262

ADT_L1_ A429_RXMC_ReadRxP ... 262

ADT_L1_ A429_RXMC_WriteRxP .. 263

A429 Receive Functions .. 264

ADT_L1_A429_RX_Channel_Init ... 264

ADT_L1_A429_RX_Channel_Close .. 265

ADT_L1_A429_RX_Channel_Start ... 265

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xv

ADT_L1_A429_RX_Channel_Stop ... 266

ADT_L1_A429_RX_Channel_ReadNewRxPs .. 266

ADT_L1_A429_RX_Channel_ReadRxP ... 267

ADT_L1_A429_RX_Channel_WriteRxP .. 267

ADT_L1_A429_RX_Channel_CVTReadRxP .. 268

ADT_L1_A429_RX_Channel_CVTWriteRxP ... 268

ADT_L1_A429_RX_Channel_SetConfig ... 269

ADT_L1_A429_RX_Channel_GetConfig ... 270

ADT_L1_A429_RX_Channel_SetMaskCompare .. 271

ADT_L1_A429_RX_Channel_GetMaskCompare.. 272

ADT_L1_A717_RX_Channel_SetConfig ... 273

ADT_L1_A717_RX_Channel_GetConfig ... 274

A429 Transmit Functions ... 275

ADT_L1_A429_TX_Channel_Init .. 275

ADT_L1_A429_TX_Channel_Close .. 276

ADT_L1_A429_TX_Channel_CB_TXPAllocate .. 276

ADT_L1_A429_TX_Channel_CB_TXPFree.. 277

ADT_L1_A429_TX_Channel_CB_Write .. 278

ADT_L1_A429_TX_Channel_CB_Read ... 279

ADT_L1_A429_TX_Channel_CB_TXPWrite.. 280

ADT_L1_A429_TX_Channel_CB_TXPRead ... 281

ADT_L1_A429_TX_Channel_Start ... 282

ADT_L1_A429_TX_Channel_Stop .. 282

ADT_L1_A429_TX_Channel_IsRunning ... 283

ADT_L1_A429_TX_Channel_AperiodicIsRunning .. 284

ADT_L1_A429_TX_Channel_SendLabel .. 285

ADT_L1_A429_TX_Channel_SendLabelBlock .. 286

ADT_L1_A429_TX_Channel_AperiodicSend .. 287

ADT_L1_A429_TX_Channel_SetConfig .. 288

ADT_L1_A429_TX_Channel_GetConfig ... 289

ADT_L1_A429_TX_ChannelGetTxpCount .. 290

A429 Signal Generator Functions .. 291

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xvi

ADT_L1_A429_SG_AddVectors ... 291

ADT_L1_A429_SG_Configure .. 291

ADT_L1_A429_SG_CreateSGCB... 292

ADT_L1_A429_SG_Free ... 292

ADT_L1_A429_SG_Start .. 293

ADT_L1_A429_SG_Stop ... 293

ADT_L1_A429_SG_IsRunning .. 293

ADT_L1_A429_SG_WordToVectors .. 294

A429 Playback Functions .. 295

ADT_L1_A429_TX_Channel_PB_Init ... 295

ADT_L1_A429_TX_Channel_PB_Close .. 296

ADT_L1_A429_TX_Channel_PB_CB_PXPAllocate ... 296

ADT_L1_A429_TX_Channel_PB_CB_PXPFree ... 297

ADT_L1_A429_TX_Channel_PB_CB_Write ... 298

ADT_L1_A429_TX_Channel_PB_CB_Read .. 299

ADT_L1_A429_TX_Channel_PB_CB_PXPWrite ... 300

ADT_L1_A429_TX_Channel_PB_CB_PXPRead .. 301

ADT_L1_A429_TX_Channel_PB_Start ... 302

ADT_L1_A429_TX_Channel_PB_Stop ... 302

ADT_L1_A429_PB_Start .. 303

ADT_L1_A429_PB_Stop ... 303

ADT_L1_A429_TX_Channel_PB_IsRunning ... 304

ADT_L1_A429_TX_Channel_PB_SetConfig ... 304

ADT_L1_A429_TX_Channel_PB_GetConfig ... 305

ADT_L1_A429_TX_Channel_PB_RXPWrite ... 306

The Layer 2 APIs .. 307

Layer 2 API for Microsoft Windows .NET 2.0 .. 307

Appendix A – Microsoft Windows.. 308

Windows Device Drivers ... 308

Windows System Requirements .. 309

Supported Alta Products ... 309

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xvii

Supported Compilers and Development Environments 309

Installation of Alta Products ... 310

Anti-Virus Note .. 312

Windows Layer 0 API Files ... 313

Windows Layer 1 API Files ... 313

Layer 1 API Example Programs – **READ ME** .. 313

Using MSVS 2005/2008/2010 C++ with the Layer 1 API 313

Layer 1 .NET API Example Programs – **READ ME** 320

Using MSVS 2005/2008 C# with the Layer 1 .NET 2.0 API 320

Using LabWindows/CVITM with the Layer 1 API .. 326

Using LabVIEWTM and LabVIEW Real-TimeTM with the Layer 1 API 329

Using LabVIEWTM with the Layer 1 .NET 2.0 API ... 329

Layer 1 .NET 2.0 API Classes and Methods ... 333

CLASS_1553_CDP ... 333

CLASS_1553_BC_CB ... 333

CLASS_A429_RXP ... 333

CLASS_A429_TXP .. 333

ADT_L1 ... 334

Using AltaAPI with TenAsys INtime™ ... 347

Using AltaAPI with IntervalZero RTX™ ... 348

Installation.. 348

Configure the Alta Board as an RTX Device .. 348

Configuration for Interrupts .. 355

Setup an RTX Application Project in MSVS ... 355

Appendix B – Linux ... 363

Linux distribution/kernel versions .. 363

Supported Alta Products ... 363

Supported C compilers .. 363

Prior to installation ... 363

Install version.h .. 364

Installing AltaAPI ... 365

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xviii

Building and installing AltaDriver ... 365

Building and Installing the Kernel PlugIn ... 367

Building the AltaAPI Example Programs ... 368

Uninstalling the Kernel PlugIn and Driver .. 370

Appendix C – VxWorks ... 371

Supported VxWorks Versions.. 371

Supported Alta Products ... 371

Supported Development Environments ... 371

Hardware Installation ... 371

System Configuration .. 372

Software Installation .. 373

Testing the Installation and L0 API .. 373

Building and Testing the L1 API and Example Programs 374

Appendix D – LynxOS ... 376

Supported LynxOS Versions ... 376

Supported Alta Products ... 376

Supported C Compilers ... 376

Hardware Installation ... 376

Software Installation .. 376

System Configuration .. 377

Building and Testing the L0 and L1 API and Example Programs 378

Note on Interrupts .. 378

Appendix E – GHS INTEGRITY .. 380

Supported INTEGRITY Versions ... 380

Supported Alta Products ... 380

Supported Development Environments ... 380

Hardware Installation ... 380

Kernel/Driver Configuration ... 380

Software Installation .. 380

Testing the Installation and L0 API .. 381

Building and Testing the L1 API and Example Programs 381

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

xix

Appendix F – Solaris ... 383

Supported Environments ... 383

Supported Alta Products ... 383

Installation on SPARC 64-bit systems ... 383

Installing the Driver on SPARC 64-bit systems ... 384

Installing the Kernel Plugin on SPARC 64-bit systems 385

Building and Testing the API and Example Programs on SPARC 64-bit
Systems .. 386

Installation on x86 32-bit Systems ... 388

Installing the Driver on x86 32-bit Systems ... 388

Installing the Kernel Plugin on x86 32-bit Systems .. 390

Building and Testing the API and Example Programs on x86 32-bit Systems
 .. 390

Manual Revision Information .. 393

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

1

The AltaAPI Software Model

Alta uses a layered approach to structure the AltaAPI (application program
interface – API), as shown below:

Each layer of the API (Layer 0, 1 and 2) is modular and can be built and tested
independently. This architecture limits the impact of changes to the module
where they occur and make it easier to test and troubleshoot problems.

There are many example programs provided (over 80 Layer 1 programs in the
full Windows installation) and some people can jump right in to one of the
example programs and cut/paste for their application. You should not have to
start from scratch for almost any application – start with one of the example
programs and jump-start your development. There is a README description file
provided with the examples.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

2

For Windows systems, these example programs are found at:

C:\Program Files\Alta Data Technologies\Alta
Software\ADT_L1_API\examples\M1553 Examples

Other operating systems (OSes) have example programs in the appropriate L1
folder of their OS distribution on the CD. The example programs are generally
the same regardless of the OS (Layer 1 applications are generally portable
across OSes with little or no modification).

You should be able to easily browse the CD folders to find the various files and
documentation. The Appendices of this manual provide installation instructions
for the supported Operating Systems.

On Windows systems, the C:\Program Files\Alta Data Technologies folder is the
root and it should be obvious to drill-down to the appropriate folder of interest,
including Documentation and Manuals and the Various Layers of the AltaAPI per
the diagram above.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

3

Layer 0 API Modules

All operating system and platform dependencies are kept in the Layer 0 API.
Therefore porting to a new OS or platform only requires changes to Layer 0. A
new Layer 0 module should be created for any new OS/platform to be supported.

OS-Specific Device Driver

Backplane (PCI, PCIe, etc.)

Alta Interface Card

Layer 0 (Low Level – OS Specific) API Model
ANSI C

Memory
Mapping

and
Unmapping

Memory
Read and

Write

Interrupt
Handler
Attach

and
Detach

Layer 0 only contains the basic functions needed to communicate with the device
driver and the Alta card. This layer is kept as simple as possible to minimize the
complexity of porting to new environments.

User applications will not normally deal with the Layer 0 API directly. The user
applications will typically interface with Layer 1.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

4

Layer 1 API Module

Layer 1 is the functional core of the API. This layer is written in ANSI C for
portability to any environment and provides all functions needed to control the
Alta hardware. Layer 1 uses the Layer 0 module for ALL communication with the
Alta hardware. Many applications will use only Layer 1 and will not need any
higher layers of the API.

OS-Specific Device Driver

Backplane (PCI, PCIe, etc.)

Alta Interface Card

Layer 0 (Low Level – OS Specific) API Model - ANSI C

General Built in
Test

Memory
Mangmnt Interrupts

Protocol
1553 BC,
RT, BM,
SG, PB

Protocol
ARINC-429 Other...

Layer 1 Module – ANSI C

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

5

Layer 2 API Modules

Layer 2 uses the Layer 1 API (which uses the Layer 0 API) to communicate with
the Alta hardware. This layer uses higher-level programming languages to
encapsulate the Layer 1 functions for object-oriented programming.

OS-Specific Device Driver

Backplane (PCI, PCIe, etc.)

Alta Interface Card

Layer 0 (Low Level – OS Specific) API Model - ANSI C

Layer 1 Module (General Operations) – ANSI C

Microsoft Visual Studio 2005
(Managed DLL Assembly) .NET 2.0: C++, C#, VB, etc

AltaDataTech:API Namespace

Layer2 Namespace

Layer1 Namespace
(Managed Wrappers for Layer 1 API Functions)

Layer 2 Model

The ADT_L1_NET20 .NET module is a Layer 2 module that allows .NET
environments like C# to use the Alta API. This is discussed in Appendix A in the
following sections:

Using MSVS 2005/2008 C# with the Layer 1 .NET 2.0 API
Layer 1 .NET 2.0 API Classes and Methods

Layer 2 modules could be added to support any object-oriented programming
language, such as Java, C++, ADA, etc.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

6

List of Acronyms

This section defines some of the acronyms that may be used in this manual.

Acronym Meaning
(“A” = ARINC; “M” = MIL-STD-1553)

ADC Analog-Digital Converter
API Application Programming Interface
BC Bus Controller - M
BCCB Bus Controller Control Block - M
BIT Built In Test
BM Bus Monitor
BPS Bits Per Second
CDP Common Data Packet - M
CSR Control & Status Register
DAC Digital-Analog Converter
DF Dual-Function - M
FF Full-Function - M
IBIT Initiated Built In Test
IMG Inter-Message Gap (time) - M
I2C Inter-Integrated Circuit (serial bus)
IQ Interrupt Queue
IQP Interrupt Queue Packet
IRIG Inter-Range Instrumentation Group (time code)
MC Mode Code - M
MCRX Multi-Channel Receive - A
OS Operating System
PB Playback
PBIT Periodic Built In Test
PE Protocol Engine
POST Power-On Self Test
PxP Playback Transmit Packet - A
RT Remote Terminal - M
RX Receive
RxP Receive Packet - A

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

7

SA Sub-Address - M
SC Signal Capture
SG Signal Generator
SGCB Signal Generator Control Block
SW Software
TR Transmit/Receive - M
TX Transmit
TXCB Transmit Control Block - A
TxP Transmit Packet - A
VV Variable Voltage - M
WC Word Count - M

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

8

The Layer 0 API

This section discusses the Layer 0 API in detail.

OS-Specific Device Driver

Backplane (PCI, PCIe, etc.)

Alta Interface Card

Layer 0 (Low Level – OS Specific) API Model
ANSI C

Memory
Mapping

and
Unmapping

Memory
Read and

Write

Interrupt
Handler
Attach

and
Detach

The Layer 0 API is the fundamental interface between the application software
(and higher API layers) and the platform-specific device driver and hardware.
This API layer is intended to encapsulate ALL operating-system or platform
dependencies and only provides basic functions to open/map memory, close/un-
map memory, read and write from/to memory, and to attach/detach interrupt
handlers.

ALL higher software layers must go through the Layer 0 API functions to access
the hardware.

Separate Layer 0 modules are defined for different operating-systems/platforms.
For example, one Layer 0 module is used for Windows platforms and a
completely different Layer 0 module is used for Linux platforms. All platforms
use the same Layer 1 module.

Layer 0 API Constants
The top-level header file (ADT_L0.h) defines the constants used in this API layer.
These constants are used by higher API layers to interface with Layer 0.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

9

The Device Identifier (Device ID – or DEVID)
The Layer 0 API (and higher layers of the API) uses a 32-bit unsigned integer
value as the Device Identifier (or Device ID - DEVID). It is very important to
understand what the Device ID is and what information it provides to the API.

First of all, we shall define a “device” as a functional hardware module. For
1553, this will be a CHANNEL (including both Bus A and Bus B and all
associated functionality – BM, RT, BC, etc.). For other protocols, the definition of
a “device” may vary based on what makes sense for that protocol. For example,
an ARINC-429 “device” will consist of a set of transmit and receive channels
(“Bank”).

As shown above, the Device ID consists of five fields – Backplane Type, Board
Type, Board Number, Channel Type, and Channel Number. The following shows
examples of their ADT_L0.h definitions. More definitions can be added from time
to time so review the ADT_L0.h file if there are questions.

The Backplane Type tells us the type of interface to the board. Currently
defined Backplane types are 0x0 for SIMULATED (where the API simulates the
board with an internal array representing board memory), 0x1 for PCI and PCIe,
and 0x2 for Ethernet.
/* Device ID Constants - Backplane Type (4 bits) - (DEVID & 0xF0000000) */
#define ADT_DEVID_BACKPLANETYPE_SIMULATED 0x00000000
#define ADT_DEVID_BACKPLANETYPE_PCI 0x10000000
#define ADT_DEVID_BACKPLANETYPE_ENET 0x20000000

The Board Type tells us what product the board is. The Test1553 and TestA429
board types are reserved for internal Alta use only.
/* Device ID Constants - Board Type (8 bits) - (DEVID & 0x0FF00000) */
#define ADT_DEVID_BOARDTYPE_SIM1553 0x00000000
#define ADT_DEVID_BOARDTYPE_TEST1553 0x00100000
#define ADT_DEVID_BOARDTYPE_PMC1553 0x00200000
#define ADT_DEVID_BOARDTYPE_PC104P1553 0x00300000
#define ADT_DEVID_BOARDTYPE_PCI1553 0x00400000
#define ADT_DEVID_BOARDTYPE_PCCD1553 0x00500000
#define ADT_DEVID_BOARDTYPE_PCI104E1553 0x00600000
#define ADT_DEVID_BOARDTYPE_XMC1553 0x00700000
#define ADT_DEVID_BOARDTYPE_ECD54_1553 0x00800000
#define ADT_DEVID_BOARDTYPE_PCIE4L1553 0x00900000
#define ADT_DEVID_BOARDTYPE_PCIE1L1553 0x00A00000
#define ADT_DEVID_BOARDTYPE_MPCIE1553 0x00B00000

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

10

#define ADT_DEVID_BOARDTYPE_SIMA429 0x01000000
#define ADT_DEVID_BOARDTYPE_TESTA429 0x01100000
#define ADT_DEVID_BOARDTYPE_PMCA429 0x01200000
#define ADT_DEVID_BOARDTYPE_PC104PA429 0x01300000
#define ADT_DEVID_BOARDTYPE_PCIA429 0x01400000
#define ADT_DEVID_BOARDTYPE_PCCDA429 0x01500000
#define ADT_DEVID_BOARDTYPE_PCI104EA429 0x01600000
#define ADT_DEVID_BOARDTYPE_XMCA429 0x01700000
#define ADT_DEVID_BOARDTYPE_ECD54_A429 0x01800000
#define ADT_DEVID_BOARDTYPE_PCIE4LA429 0x01900000
#define ADT_DEVID_BOARDTYPE_PCIE1LA429 0x01A00000
#define ADT_DEVID_BOARDTYPE_MPCIEA429 0x01B00000

#define ADT_DEVID_BOARDTYPE_PMCMA4 0x02200000
#define ADT_DEVID_BOARDTYPE_XMCMA4 0x02700000

#define ADT_DEVID_BOARDTYPE_ENET1553 0x03100000
#define ADT_DEVID_BOARDTYPE_PMCE1553 0x03200000
#define ADT_DEVID_BOARDTYPE_ENETA429 0x03300000

The Board Number is just that – the number of the specific board in the system
of that backplane and product type. The first board is board number 0, the
second board is board number 1, and so on.

The Channel Type tells us what the channel is – this could be a 1553 channel,
global registers, etc. The channel types currently defined are 0x01 for the board-
level global registers, 0x10 for 1553 channels, 0x20 for A429 devices, and 0x30
for WMUX devices.
/* Device ID Constants - Channel Type (8 bits)
 (DEVID & 0x0000FF00) */
#define ADT_DEVID_CHANNELTYPE_GLOBALS 0x00000100
#define ADT_DEVID_CHANNELTYPE_1553 0x00001000
#define ADT_DEVID_CHANNELTYPE_A429 0x00002000
#define ADT_DEVID_CHANNELTYPE_WMUX 0x00003000

The Channel/Bank Number is an index representing multiple devices on the
same board. For example, a 1553 board can have multiple dual redundant
channels and each 1553 channel is considered a “device” by the API.

For ARINC a “Bank” of channels is considered a “device” - a Bank usually
consists of 8, 14 or 16 ARINC channels. There are typically one or two banks
per card and the value for Bank 1 would be zero and Bank 2 would be one.

The use of the Channel/Bank Number field may vary for different protocols, or
may always be zero for product types that have only one “device” per board. For
remainder of this document, the reference to “Channel” may also refer to a
“Bank” for ARINC devices.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

11

/* Device ID Constants - Channel Number (8 bits)(DEVID & 0x000000FF) */
#define ADT_DEVID_CHANNELNUM_01 0x00000000
#define ADT_DEVID_CHANNELNUM_02 0x00000001
#define ADT_DEVID_CHANNELNUM_03 0x00000002
#define ADT_DEVID_CHANNELNUM_04 0x00000003
#define ADT_DEVID_CHANNELNUM_05 0x00000004
#define ADT_DEVID_CHANNELNUM_06 0x00000005
#define ADT_DEVID_CHANNELNUM_07 0x00000006
#define ADT_DEVID_CHANNELNUM_08 0x00000007
#define ADT_DEVID_CHANNELNUM_09 0x00000008
#define ADT_DEVID_CHANNELNUM_10 0x00000009
#define ADT_DEVID_CHANNELNUM_11 0x0000000A
#define ADT_DEVID_CHANNELNUM_12 0x0000000B
#define ADT_DEVID_CHANNELNUM_13 0x0000000C
#define ADT_DEVID_CHANNELNUM_14 0x0000000D
#define ADT_DEVID_CHANNELNUM_15 0x0000000E
#define ADT_DEVID_CHANNELNUM_16 0x0000000F

/* Device ID Constants – ARINC Bank Number (8 bits)(DEVID & 0x000000FF) */
#define ADT_DEVID_BANK_01 0x00000000
#define ADT_DEVID_BANK_02 0x00000001
#define ADT_DEVID_BANK_03 0x00000002
#define ADT_DEVID_BANK_04 0x00000003

Raw Hex Device ID Examples:
A Device ID of 0x10201000 indicates Channel 1 of Board 1, PMC-1553
A Device ID of 0x10201001 indicates Channel 2 of Board 1, PMC-1553
A Device ID of 0x10211000 indicates Channel 1 of Board 2, PMC-1553
A Device ID of 0x10211001 indicates Channel 2 of Board 2, PMC-1553
A Device ID of 0x10200200 indicates Bank 1 of Board 1, PMC-A429
A Device ID of 0x10200201 indicates Bank 2 of Board 1, PMC-A429
A Device ID of 0x10210200 indicates Bank 1 of Board 2, PMC-A429
A Device ID of 0x10210201 indicates Bank 2 of Board 2, PMC-A429

#Define Device ID Examples for Layer 1 Programs (from
ADT_L0.h):
// #define examples for other cards & channels - change for your card!!
// PCI-1553 Channel 1
#define DEVID (ADT_PRODUCT_PCI1553 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_1553 |ADT_DEVID_CHANNELNUM_01)

//PMC-1553 Channel 2
#define DEVID (ADT_PRODUCT_PMC1553 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_1553 |ADT_DEVID_CHANNELNUM_02)

//PCCD-1553 Channel 2
#define DEVID (ADT_PRODUCT_PCCD1553 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_1553 |ADT_DEVID_CHANNELNUM_02)

//PMCMA4 (1553 and ARINC card) 1553 Channel 1
#define DEVID (ADT_PRODUCT_PMCMA4 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_1553 |ADT_DEVID_CHANNELNUM_01)

//PMCMA4 (1553 and ARINC card) ARINC Bank 1
#define DEVID (ADT_PRODUCT_PMCMA4 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_A429 |ADT_DEVID_BANK_01)

//PCI-A429 Bank 1
#define DEVID (ADT_PRODUCT_PCIA429 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_A429 |ADT_DEVID_BANK_01)

//PCCD-A429 Bank 1
#define DEVID (ADT_PRODUCT_PCCD429 | ADT_DEVID_BOARDNUM_01 | ADT_DEVID_CHANNELTYPE_A429 |ADT_DEVID_BANK_01)

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

12

Layer 0 API Files
The Layer 0 API consists of a top-level header file (ADT_L0.h) and at least one C
file that implements the Layer 0 functions. Additional files may be added for
internal functions. The operating-system specific appendices discuss the specific
files included with each Layer 0 module.

Layer 0 API Type Definitions
The top-level header file (ADT_L0.h) defines a few basic types that are used by
higher API layers. These are provided in type definitions in Layer 0 so that they
can be defined in one place appropriately for the target operating system and
platform.

ADT_L0_UINT32
This is the 32-bit unsigned integer type. This is the primary base type used
throughout the higher layers of the API.

ADT_L0_UINT16
This is the 16-bit unsigned integer type.

ADT_L0_UINT8
This is the 8-bit unsigned integer type.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

13

Error Code Constants
The Layer 0 API reserves the error code range 0 to 999. These constants define
integer (32-bit) values that will be returned by the API functions to indicate either
SUCCESS or an error code indicating why the function failed.

/* Layer 0 Error Codes (1 to 999) */
#define ADT_SUCCESS 0 /*!< \brief Function call completed without error. */
#define ADT_FAILURE 1 /*!< \brief Function call completed with error. */
#define ADT_ERR_MEM_MAP_SIZE 2 /*!< \brief Invalid memory map size. */
#define ADT_ERR_NO_DEVICE 3 /*!< \brief Device not found */
#define ADT_ERR_CANT_OPEN_DEV 4 /*!< \brief Can't open device */
#define ADT_ERR_DEV_NOT_INITED 5 /*!< \brief Device not initialized */
#define ADT_ERR_DEV_ALREADY_OPEN 6 /*!< \brief Device already open */
#define ADT_ERR_UNSUPPORTED_BACKPLANE 7 /*!< \brief Unsupported backplane in DevID */
#define ADT_ERR_UNSUPPORTED_BOARDTYPE 8 /*!< \brief Unsupported board type in DevID */
#define ADT_ERR_UNSUPPORTED_CHANNELTYPE 9 /*!< \brief Unsupported channel type in DevID */
#define ADT_ERR_CANT_OPEN_DRIVER 10 /*!< \brief Can't open driver */
#define ADT_ERR_CANT_SET_DRV_OPTIONS 11 /*!< \brief Can't set driver options */
#define ADT_ERR_CANT_GET_DEV_INFO 12 /*!< \brief Can't get device info */
#define ADT_ERR_INVALID_BOARD_NUM 13 /*!< \brief Invalid board number */
#define ADT_ERR_INVALID_CHANNEL_NUM 14 /*!< \brief Invalid channel number */
#define ADT_ERR_DRIVER_READ_FAIL 15 /*!< \brief Driver read memory failure */
#define ADT_ERR_DRIVER_WRITE_FAIL 16 /*!< \brief Driver write memory failure */
#define ADT_ERR_DEVICE_CLOSE_FAIL 17 /*!< \brief Device close failure */
#define ADT_ERR_DRIVER_CLOSE_FAIL 18 /*!< \brief Driver close failure */
#define ADT_ERR_KP_OPEN_FAIL 19 /*!< \brief Kernel Plug-In Open failure */
#define ADT_ERR_ENET_NO_PORT_AVAILABLE 100 /*!< \brief No UDP port available */
#define ADT_ERR_ENET_READ_FAIL 101 /*!< \brief ENET Read failure */
#define ADT_ERR_ENET_WRITE_FAIL 102 /*!< \brief ENET Write failure */
#define ADT_ERR_ENET_NOTRUNNING 103 /*!< \brief ENET Sockets not running */
#define ADT_ERR_ENET_INVALID_SIZE 104 /*!< \brief ENET Invalid payload size */
#define ADT_ERR_ENET_SENDFAIL 105 /*!< \brief ENET Send failure */
#define ADT_ERR_ENET_SELECTFAIL 106 /*!< \brief ENET Select failure */
#define ADT_ERR_ENET_SELECTTIMEOUT 107 /*!< \brief ENET Select timeout */
#define ADT_ERR_ENET_BADSEQNUM 108 /*!< \brief ENET Bad sequence number */
#define ADT_ERR_ENET_SRVSTSFAIL 109 /*!< \brief ENET Server Status Code indicate FAILURE */

NOTE: ADT_ERR_NO_DEVICE is the most common Layer 0 error returned. This
usually means the wrong DEVID has been defined (or not changed from a Layer
1 example program – you must change the DEVID parameter to match your card
type).

An error of ADT_ERR_CANT_OPEN_DEV would indicate a driver problem. And an
error of ADT_ERR_DEV_ALREADY_OPEN probably indicates the device was not
properly closed (probably an application crash or improper shutdown).

The function ADT_L1_Error_to_String can be used to convert an error/status
code to a string.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

14

Layer 0 API Functions
Each of the Layer 0 API functions is described below.

Low Level Functions

ADT_L0_AttachIntHandler
ADT_L0_UINT32 ADT_L0_AttachIntHandler (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 chanRegOffset,

 void * pUserISR,
 void * pUserData)

This function attaches an interrupt handler function. If a pointer to user context data
is provided in the pUserData parameter, this will be passed back to the user interrupt
handler function when the interrupt occurs.

NOTE: AltaAPI versions prior to v2.2.1.0 did not include the pUserData parameter.
This needs to be added when porting code from older API versions.

Parameters:
devID is the 32-bit Device Identifier.
chanRegOffset is the byte offset to the PE registers for the channel.
pUserISR is a pointer to the function to attach as an ISR.
pUserData is a pointer to user context data – set to NULL if not used.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L0_DetachIntHandler
ADT_L0_UINT32 ADT_L0_DetachIntHandler (ADT_L0_UINT32 devID)

This function detaches an interrupt handler function.

Parameters:
devID is the 32-bit Device Identifier.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

15

ADT_L0_MapMemory
ADT_L0_UINT32 ADT_L0_MapMemory (ADT_L0_UINT32 devID,

 ADT_L0_UINT32 startupOptions,
 ADT_L0_UINT32 clientIpAddress,
 ADT_L0_UINT32 serverIpAddress);

This function maps the device memory and stores the memory pointer internally for
use with the read/write functions.

Parameters:
devID is the 32-bit Device Identifier.
startupOptions are user selected startup options defined as follows:

#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004
Note: the “ADT_L1_API_DEVICEINIT_NOKP” startup option only applies to
platforms that use the Jungo WinDriver software for the device driver (Windows,
Linux, Solaris). If this option is selected then hardware interrupts cannot be
used, because the kernel plug-in is required for hardware interrupts. This option
is used for Alta internal testing and rare cases where the kernel plug-in cannot be
installed.

clientIpAddress is the 32-bit IP address of the client computer where the AltaAPI program
is running. THIS IS ONLY USED FOR ENET DEVICES. For all other devices this
parameter is ignored and can be set to zero.
serverIpAddress is the 32-bit IP address of the server ENET device. THIS IS ONLY
USED FOR ENET DEVICES. For all other devices this parameter is ignored and can be
set to zero.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

16

ADT_L0_MapMemory_pciInfo
ADT_L0_UINT32 ADT_L0_MapMemory_pciInfo (ADT_L0_UINT32 devID,

 ADT_L0_UINT32 startupOptions,
 ADT_L0_UINT32 *pciBus,
 ADT_L0_UINT32 *pciDevice,
 ADT_L0_UINT32 *pciFunc);

This function maps the device memory and stores the memory pointer internally for
use with the read/write functions. Also returns PCI info – Bus/Device/Function.

Parameters:
devID is the 32-bit Device Identifier.
startupOptions are user selected startup options defined as follows:

#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004
Note: the “ADT_L1_API_DEVICEINIT_NOKP” startup option only applies to
platforms that use the Jungo WinDriver software for the device driver (Windows,
Linux, Solaris). If this option is selected then hardware interrupts cannot be
used, because the kernel plug-in is required for hardware interrupts. This option
is used for Alta internal testing and rare cases where the kernel plug-in cannot be
installed.

pciBus is the pointer to store the PCI Bus number.
pciDevice is the pointer to store the PCI Device number.
pciFunc is the pointer to store the PCI Function number.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L0_UnmapMemory
ADT_L0_UINT32 ADT_L0_UnmapMemory (ADT_L0_UINT32 devID)

This function un-maps and releases a previously mapped block of memory.

Parameters:
devID is the 32-bit Device Identifier.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

17

ADT_L0_msSleep
void ADT_L0_msSleep (ADT_L0_UINT32 msDelay)

This function waits for the requested number of milliseconds.

Parameters:
msDelay is the number of milliseconds to wait.

ADT_L0_ReadMem16
ADT_L0_UINT32 ADT_L0_ReadMem16 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 offset,
 ADT_L0_UINT16 * data,
 ADT_L0_UINT32 count)

This function reads the requested number of 16-bit words from memory.
This function is only used when programming the PE/firmware to an Alta device.

Parameters:

devID is the 32-bit Device Identifier.
offset is the BYTE offset to the first word to read
data is a pointer to store the words read
count is the number of 16-bit words to read

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_DEV_NOT_INITED - Device not initialized
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

18

ADT_L0_ReadMem32
ADT_L0_UINT32 ADT_L0_ReadMem32 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 offset,

ADT_L0_UINT32 * data,
ADT_L0_UINT32 count)

This function reads the requested number of 32-bit words from memory.

Parameters:
devID is the 32-bit Device Identifier.
offset is the BYTE offset to the first word to read
data is a pointer to store the words read
count is the number of 32-bit words to read

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_DEV_NOT_INITED - Device not initialized
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane
ADT_FAILURE - Completed with error

ADT_L0_ReadSetupMem32
ADT_L0_UINT32 ADT_L0_ReadSetupMem32 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 offset,
 ADT_L0_UINT32 * data,
 ADT_L0_UINT32 count)

This function reads the requested number of 32-bit words from board setup memory.
This function is only used when programming the PE/firmware to an Alta device.

Parameters:
devID is the 32-bit Device Identifier.
offset is the BYTE offset to the first word to read
data is a pointer to store the words read
count is the number of 32-bit words to read

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

19

ADT_L0_WriteMem16
ADT_L0_UINT32 ADT_L0_WriteMem16 (ADT_L0_UINT32 devID,

ADT_L0_UINT32 offset,
ADT_L0_UINT16 * data,
ADT_L0_UINT32 count)

This function writes the requested number of 16-bit words to memory.
This function is only used when programming the PE/firmware to an Alta device.

Parameters:
devID is the 32-bit Device Identifier.
offset is the BYTE offset to the first word to write
data is a pointer to the words to write
count is the number of 16-bit words to write

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_DEV_NOT_INITED - Device not initialized
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane
ADT_FAILURE - Completed with error

ADT_L0_WriteMem32
ADT_L0_UINT32 ADT_L0_WriteMem32 (ADT_L0_UINT32 devID,

ADT_L0_UINT32 offset,
ADT_L0_UINT32 * data,
ADT_L0_UINT32 count)

This function writes the requested number of 32-bit words to memory.

Parameters:
devID is the 32-bit Device Identifier.
offset is the BYTE offset to the first word to write
data is a pointer to the words to write
count is the number of 32-bit words to write

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_DEV_NOT_INITED - Device not initialized
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

20

ADT_L0_WriteSetupMem32
ADT_L0_UINT32 ADT_L0_WriteMem32 (ADT_L0_UINT32 devID,

ADT_L0_UINT32 offset,
ADT_L0_UINT32 * data,
ADT_L0_UINT32 count)

This function writes the requested number of 32-bit words to board setup memory.
This function is only used when programming the PE/firmware to an Alta device.

Parameters:
devID is the 32-bit Device Identifier.
offset is the BYTE offset to the first word to write
data is a pointer to the words to write
count is the number of 32-bit words to write

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane
ADT_FAILURE - Completed with error

ADT_L0_ENET_ADCP_Reset
ADT_L0_UINT32 ADT_L0_ENET_ADCP_Reset (ADT_L0_UINT32 devID)

This function is only used with ENET devices and transmits an ADCP RESET
command to the device. This resets the entire ENET device and must use the
device ID for the Global device.

Parameters:
devID is the 32-bit Device Identifier.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane, must be ENET

device
ADT_ERR_UNSUPPORTED_CHANNEL - Unsupported channel type, must be Global

device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

21

ADT_L0_ENET_ADCP_GetStatistics
ADT_L0_UINT32 ADT_L0_ENET_ADCP_GetStatistics (ADT_L0_UINT32 devID,

ADT_L0_UINT32 *pPortNum,
ADT_L0_UINT32 *pTransactions,
ADT_L0_UINT32 *pRetries,
ADT_L0_UINT32 *pFailures)

This function is only used with ENET devices and gets statistical information on the
ADCP communications with the device. This returns the transaction count, retry
count, and failure count. A transaction is a command packet and response packet
pair (normally a memory read or write operation). A retry is anything that causes a
retry (bad sequence number in response packet, bad status value in response
packet, or timeout waiting for response packet). A failure is any transaction where all
retries were attempted but did not succeed.

Parameters:
devID is the 32-bit Device Identifier.

 pPortNum is a pointer to store the UDP port number for the device.
 pTransactions is a pointer to store the number of transactions.
 pRetries is a pointer to store the number of retries.
 pFailures is a pointer to store the number of failures.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane, must be ENET

device
ADT_ERR_ENET_NOTRUNNING – ENET services not running, device not initialized

ADT_L0_ENET_ADCP_ClearStatistics
ADT_L0_UINT32 ADT_L0_ENET_ADCP_ClearStatistics

(ADT_L0_UINT32 devID)
This function is only used with ENET devices and clears the statistical information on
the ADCP communications with the device. This clears the transaction count, error
count, and failure count.

Parameters:
devID is the 32-bit Device Identifier.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane, must be ENET

device
ADT_ERR_ENET_NOTRUNNING – ENET services not running, device not initialized

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

23

The Layer 1 API

This section discusses the Layer 1 API in detail.

OS-Specific Device Driver

Backplane (PCI, PCIe, etc.)

Alta Interface Card

Layer 0 (Low Level – OS Specific) API Model - ANSI C

General Built in
Test

Memory
Mangmnt Interrupts

Protocol
1553 BC,
RT, BM,
SG, PB

Protocol
ARINC-429 Other...

Layer 1 Module – ANSI C

The Layer 1 API is a general ANSI “C” API that provides all the major functions
needed to work with Alta products. This API layer is portable to any
platform/operating-system/environment that supports ANSI “C” programming.
This layer contains NO platform-specific code. Only one Layer 1 (L1) API
module is needed for ALL operating-systems and platforms.

Portability and Reliability
Many applications will use only the Layer 1 API to control the Alta boards and will
not use any higher API layers. Window’s user generally link in the provided
DLL/Lib files and Linux and Unix based operating systems will build the desired
source files into their application and link in the provided shared object file for the
layer 0 API. The Appendices at the end of this manual provide details on
installation and setup for the supported operating systems. Once the Alta
software is installed and the appropriate development project is setup, then the
user will be using the same Layer 1 functions regardless of the OS – this makes
for a highly portable application.

Another key point of the Layer 1 API is to abstract and manage the low level
driver and device-level hardware control registers. Most competitors’ APIs
require the application to manage low-level registers and raw memory pointers,
which is not reliable and not portable. Alta’s Layer 1 API will abstract and
manage the registers and pointers and provide the user’s application access via

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

24

simple index numbers for data buffers and message structures. This can greatly
simplify application program and makes the application more reliable and
portable.

Channels & Devices – Basic Definition Reviewed
The AltaAPI and card level Protocol Engines (PEs) are unique in the industry where
each 1553 channel or bank of ARINC channels is a unique logical device (in the
API referenced as a “DEVID”). Separate logical devices allow multi-application
support, usually one application thread per device. This is unique and powerful as
most other products on the market do not support multiple applications natively in
their design and force the user’s application to manage different applications. Alta
devices even have their device reset so that respective application control does not
affect another device’s application thread, even on the same card. In most cases,
each device application can even have its own interrupt handler.

Each 1553 channel is a separate logical device.

For ARINC/A429 products, channels are grouped into logical devices called a Bank.
Each channel within a bank has independent controls. An ARINC/A429 device
Bank has a maximum of 16 channels and only PCI, PMC, XMC, PCI Express type
cards (with larger board area) have more than 16 channels, and thus, two logical
device banks. This bank number is fundamental in controlling the desired channel of
the card.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

25

The following table shows ARINC/A429 product channel assignments for each bank.
Your hardware manual will provide pin-outs for the channels. Remember, many of
the first channels of each bank are shared RX and TX functions, which can be very
handy for self-monitoring of TX applications (the pin-outs in the respective hardware
manual mark these channels).

ARINC/A429 Product
Bank1

(Channels 1-16
max)

Bank2
(Channels 17-30

max)
PCI-A429 Channels 1-16 Channels 17-30
PCIE4L-A429 Channels 1-16 Channels 17-30
PCIE1L-A429 Channels 1-8 NA
PCCD-A429 Channels 1-8 NA
ECD54-A429 Channels 1-8 NA
PMC-A429
 (including cPCI and PCI
Carriers)

Channels 1-16 Channels 17-30

PMC-MA4
 (including cPCI and PCI
Carriers)

Channels 1-8 NA

XMC-A429 Channels 1-16 Channels 17-30
XMC-MA4 Channels 1-8 NA
PC104P-A429 Channels 1-16 Channels 17-24
MPCIE-A429 Channels 1-6 NA
ENET-A429 Channels 1-8 NA

Table Layer 1 API - 1: ARINC/A429 Device ID (DEVID) Bank Channel
Assignments

All Layer 1 (L1) functions start with a Device ID parameter – this parameter is
usually referenced as the “DEVID” parameter in the documents and sample
programs (the DEVID value is derived from ADT_L0.h defines as described in
the previous section).

Each of these devices can be controlled separately, even if the devices are on
the same board. For example, you can run one of the API example programs on
one 1553 channel device and run the AltaView bus analyzer software on another
1553 channel device on the same board and use AltaView to verify that your API
program is performing correctly.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

26

Common Layer 1 API Functions & Discussion
The following sections will detail how to use the Layer 1 API and will explain the
architecture and operation of the API. Prior to starting the discussion, we should
review a few Layer 1 basics that apply to any Alta device (1553 or ARINC –
A429).

ADT_L1.h File & 1553 or ARINC Quick Reference Guides
The ADT_L1.h file is a key reference file for API programming. Data structures,
bit definitions, L1 error codes (status/error code range 1000-1999) and
prototypes of function calls are defined in this file. You will want to have this file
handy to reference key API definitions.

For most applications, you can match up the ADT_L1.h file with the 1553 or
ARINC Quick Reference Guide found in the Documents/Manuals folder of the CD
(or in the “Alta Data Technologies\Alta Documentation\Manuals” path of your MS
Windows installation). The Quick Reference Guide and the ADT_L1.h file
combine to provide a great reference for detailed programming of data structures
and bit control/status options.

If you need detailed reference to 1553 or ARINC Protocol Engine (PE) data
structures and PE rules, then reference the appropriate AltaCore manual (1553
or ARINC).

Basic Data Types
The fundamental data type used by the API is an unsigned 32-bit word. Because
different operating-systems or platforms may have different definitions of data
types, we use the Layer 0 API module (which contains all OS/platform specifics)
to define the unsigned 32-bit data type appropriately for the OS/platform. The
Layer 0 API module defines (in the file ADT_L0.h) the following type for an
unsigned 32-bit word:

 ADT_L0_UINT32

This is the building block for all higher-level data structures used in the API. You
will see that most API function parameters are of this type or are data structures
containing fields of this type. There are few references to
ADT_L0_UINT16/UINT8, but the ADT_L0_UNIT32 data type is by far the most
referenced.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

27

Data Structures
There are several data structures defined in the ADT_L1.h file that are used in
the API. These structures will provide control, status and data values that you
set or read (from card reads). It is a good idea to zero/clear, memset(), these
structures to zero prior to reference.

General Programming Flow
All applications will follow a simple execution flow as follows:

1. Start the API: Connect the Device to the Driver and Initialize API and
Device Memory – Single Function call for most applications.

2. Initialize the Desired Protocol Engine (PE) Operation – Call an Init
Function for 1553 or ARINC Operations

a. Allocate Buffers or Set Defaults Values for the Operation. (You
might repeat this Step 2 for Multi Operation Applications).

3. Start the Operation
4. Read and Write Data for the Operation – This step is usually repeated

at some application control frequency through system (or application timer
events) or through interrupt events. This step is the main part of the
application (the whole purpose of the Alta network interface card is to read
and write data from the 1553 or ARINC networks).

5. Stop the Operation
6. Close (and de-allocate) Operation Memory
7. Close the API

Most of the steps above are each performed in a single function call. There are
several example programs provided and all of them follow the general flow
above. Most applications behave in the manner above: Initialize the connection,
allocate buffers, read/write data, free the buffers, and close the connection. The
following figures and manual sections will detail each of these steps specific for
your card’s 1553 or ARINC operation.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

28

Initializing and Closing the API
The first and last step of any program will be the start (Initialize) and close the
device with the API. Initialization connects the device to the device driver and
initializes memory for the API and device. The Close function will do the
opposite: Close will disconnect the device from the driver and destroy or de-
allocate memory associated with the device and 1553 or ARINC operation for the
respective device.

 Most applications will choose one the following initialization functions:

• ADT_L1_1553/A429_InitDefault()
• ADT_L1_1553/A429_InitDefault_ExtendedOptions()

There are many different 1553 and ARINC variants used on older or custom
networks – but 95% of applications want to use standard protocol setup.
These “InitDefault” functions combine low level L1 setup (memory mapping) and
device/protocol steps for standard 1553 and ARINC 429 protocols to make a
simple, one function call method for Initializing a 1553 or ARINC device.

Most applications do not need to use/read the following paragraph, but
please review the “Closing the Device” paragraph on the next page.

Advanced Concepts on Device Initialization
General functions to open and close the API are provided in the file
ADT_L1_General.c. The InitDefault functions above call this base function:
 ADT_L1_InitDevice(DEVID, options);

This function maps memory to the selected device, initializes the API memory
management structures, and has options to perform a memory test, perform hard
PE resets and disabling of Windows/Solaris/Linux Jungo Kernel Plug-In for the
Jungo driver (ignore this for most applications). If any of these steps fail then the
ADT_L1_InitDevice function will return an appropriate error code.

Note that only ONE application can control a given device/channel. If a second
application tries to initialize a device that has already been initialized the
initialization function will return the ADT_ERR_DEVICEINUSE error code. The
device in use flag will only be cleared when the device is closed (with the
ADT_L1_CloseDevice function described below).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

29

WARNING: If an application exits without closing the device then the device will
be unavailable because it will still be marked as “in use”. The “options”
parameter of the ADT_L1_InitDevice function can be set to a non-zero value to
override the “in use” error.

Closing the Device – Last Step of an Application
At the end of an application, or when the application no longer needs to use the
Alta device it can close the API as follows:

 ADT_L1_CloseDevice(DEVID);

This function frees resources, closes memory management, un-maps memory,
and detaches from the device. No API calls should be made for the device after
the ADT_L1_CloseDevice call has been made. The device must be initialized
again before use.

Memory Management
The API provides memory management functions (in the file
ADT_L1_MemMgmt.c) to allocate and free blocks of memory on the Alta board.
These functions are normally only used internally by the API to manage board
memory for the data structures created, maintained, and destroyed by other API
functions. User applications will not normally use any of the memory
management functions directly.

Many of the API functions come in pairs – one function creates/allocates data
structures, control blocks, buffers, etc. and a corresponding function closes/frees
the data structures. This allows the user application to dynamically create and
destroy data structures as needed without re-initializing the device in order to re-
use the same board memory.

The ADT_L1_GetMemoryAvailable function is provided to allow the user to see
how much memory is available on the device:

status = ADT_L1_GetMemoryAvailable(DEVID, &memAvailable);
if (status == ADT_SUCCESS)

 printf("%d bytes of memory available.\n", memAvailable);

This function returns the number of bytes available. This value will be a multiple
of 4 because memory is allocated in 32-bit words.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

30

WARNING:
The functions that allocate and free board memory are not thread-safe. Multi-
threaded applications should use a single thread for a single device (1553
channel or ARINC 429 device/bank). See the section on multi-threaded
applications below for more information.

Multi-Threaded Applications
There are parts of the Alta API that are not thread-safe. This section discusses
what can and cannot be done with the Alta API in multi-threaded applications.

The Alta API memory management module uses an internal global array of
“device memory management” structure pointers, each of which provides a
linked-list of structures that track the free memory on a given device (1553
channel or A429 bank of channels). This global array is the main concern for
multi-threaded applications using the Alta API.

Because each device ID has its own entry in the memory manager array, it is
safe to have different threads for different devices on a given Alta board.
Likewise, it is safe to have separate threads for each Alta board in the system
(because each board is a collection of devices).

It MAY NOT be safe to use multiple threads on a single device. For
example, a 1553 application might want to use a single 1553 channel device with
separate threads for BC, RT, and BM operation. If these threads are
simultaneously allocating or freeing board memory for BC messages, RT buffers,
etc. then it is possible to have conflicts in the memory management module of
the Alta API.

That being said, it is possible to use multiple threads on a single device with
careful application design. If the application firsts performs all allocation of data
structures in the main thread, then starts threads that only read or write packet
data without allocating or freeing memory on the board, then this can work.

Alta does not guarantee thread-safety with the Alta API. Multi-threaded
applications should be restricted to ONE THREAD for ONE DEVICE
(remember for ARINC devices are a bank of RX/TX channels).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

31

Built-In-Test (BIT) Operation
The API provides BIT functions in the file ADT_L1_BIT.c. BIT functions are used
at the logical device level (1553 channel device or A429 bank device). If you are
using multiple 1553 channels or A429 banks you will run BIT separately for each
logical device (as specified by the Device Identifier).

Built-In-Tests can be classified as “Power-On Self Test” (POST) which is
performed on initialization, “Initiated BIT” (IBIT) which is performed only when
initiated by a user command (and typically requires the device to be in a “test
state” rather than in normal operational mode), or “Periodic BIT” (PBIT) which
can be run periodically during normal operation of the device.

Power-On Self Test
The device will perform internal tests on power-up and the results will be stored
in the BIT Status Register. When the board is initialized, the API maps memory
and performs a memory test using the ADT_L1_BIT_MemoryTest function. If the
memory test fails then initialization fails. The POST results can be checked by
using the ADT_L1_BIT_PeriodicBIT function to read the BIT Status Register.

Initiated BIT
Initiated BIT is often run after initialization and may be run during operation only if
the user puts the application in a safe “test mode”. The device may need to be
re-initialized after running initiated BIT because things like memory tests will
over-write any data structures in board memory. The ADT_L1_BIT_InitiatedBIT
function is used to run this test.

The ADT_L1_BIT_MemoryTest function can be called as part of a user IBIT
process to test all or part of the device’s memory if desired.

Periodic BIT
Periodic BIT is generally a safe test that can be run during normal operation.
This is a test that can be run periodically (hence the name “periodic BIT”) to
verify the basic health of the device. The ADT_L1_BIT_PeriodicBIT function is
used to check the status of PBIT.

BIT Status Register
The BIT Status Register should be zero if all tests pass. A non-zero value
indicates a failure. Please refer to the appropriate AltaCore Users Manual
(1553 or A429) for details on the BIT Status Register.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

32

Using IRIG-B Time
The Alta boards are capable of decoding IRIG-B time-code signals. More
information on IRIG time-code formats can be found here:
 http://www.irigb.com/pdf/wp-irig-200-98.pdf

This section explains how IRIG-B time can be correlated to time-stamps from the
internal 50MHz clock on Alta boards. The example program
ADT_L1_1553_ex_bm2_IRIGsync.c demonstrates the API usage discussed
here.

You must first connect the IRIG-B signal to the board. Refer to the
Hardware Manual for your specific Alta board type for information on
connector pin-outs.

IRIG Calibration
Once the signal is connected to the board, the first step is to calibrate the IRIG
decoder on the Alta board to your IRIG-B signal. This is done at the Global
device level – this calibration applies for all 1553 channels and/or A429 banks on
the board.
 status = ADT_L1_Global_CalibrateIrigDac(DEVID_GLOB);

This process will take several seconds to complete. If the return status is
API_SUCCESS then the calibration was successful and the board should now be
locked to the IRIG signal.

Verifying IRIG Lock
You can check the IRIG lock status by reading the Global CSR for the board. Bit
4 will be set if you have a good lock to the IRIG signal.

status = ADT_L1_ReadDeviceMem32(DEVID_GLOB,
ADT_L1_GLOBAL_CSR, &globalCSR, 1);

 if (globalCSR & ADT_L1_GLOBAL_CSR_IRIG_LOCK)
 printf("IRIG signal is locked.\n");
 else
 printf("IRIG signal is NOT locked.\n");

http://www.irigb.com/pdf/wp-irig-200-98.pdf�

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

33

Reading the IRIG time from the Global Device
You can read the IRIG time for the last one-second sync from the Global device
for the board.
 status = ADT_L1_Global_ReadIrigTime(DEVID_GLOB,

&timeHigh, &timeLow);

The “timeHigh” and “timeLow” words will contain the IRIG time in BCD format as
shown below.

IRIG Time Low – 0x000000CC
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Seconds

0

 BCD MinutesBCD Hours

IRIG Time High– 0x000000C8
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Days

0

 BCD Years

NOTE:
IRIG Standard 200-98 – The IRIG-B time code does not include years.
IRIG Standard 200-04 – The IRIG-B time code can include years.

NOTE: The IRIG time registers on the board will contain the time for the
PREVIOUS one-second sync, so if you read the raw value from the board the
time will be one second behind. The API corrects for this so the
ADT_L1_Global_ReadIrigTime function returns the correct time.

Reading the LATCHED IRIG and Internal Time from a 1553/A429 Device
The firmware on the Alta board will latch the IRIG time and the corresponding
internal 50MHz clock time on every one-second IRIG sync (every one-second
boundary). Therefore, the latched time is updated once per second. These
latched values can be used to convert message time-stamps from internal time to
IRIG time.

This is done at the 1553 channel or A429 bank level (rather than the Global
device) because each channel/bank device has its own internal clock registers
that may have different values for each channel/bank on the board. The
following function can be used for 1553 channel devices.
 status = ADT_L1_1553_IrigLatchedTimeGet(DEVID,

&irigTimeHigh, &irigTimeLow,
&intTimeHigh, &intTimeLow,

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

34

&deltaTimeHigh, &deltaTimeLow);

This function returns the latched IRIG time (in BCD format), the latched internal
50MHz time (20ns LSB), and the delta time – this is the difference between the
latched IRIG time (converted from BCD to 64-bit binary with 20ns LSB) and the
latched internal time.

NOTE: The IRIG time registers on the board will contain the time for the
PREVIOUS one-second sync, so if you read the raw value from the board the
time will be one second behind. The API corrects for this so the
ADT_L1_1553_IrigLatchedTimeGet function returns the correct time.

Converting Internal Time-Stamps to IRIG Time
The delta time can be used to convert time-stamps from the internal 50MHz clock
to IRIG time. For example, let’s say we want to read 1553 CDP message buffers
from the 1553 Bus Monitor and convert the time-stamps on these messages from
internal time to IRIG time.

/* Convert the delta time to a 64-bit value */
timeDelta = ((unsigned long long int) deltaTimeHigh << 32) |
 (unsigned long long int) deltaTimeLow;

/* Get the internal timestamp from the CDP as 64-bit value */
timeCDP = ((unsigned long long int) bmMessages[i].TimeHigh << 32) |
 ((unsigned long long int) bmMessages[i].TimeLow);

/* Convert to the equivalent IRIG time (64-bit math) */
timeIrig = timeCDP + timeDelta;

/* Write the equivalent IRIG time back to the CDP */
bmMessages[i].TimeHigh = (ADT_L0_UINT32) (timeIrig >> 32);
bmMessages[i].TimeLow =

(ADT_L0_UINT32) (timeIrig & 0x00000000FFFFFFFF);

Now the CDP time-stamp contains the 64-bit binary IRIG time for the message.
If the CDPs are saved to a file, then the file can be opened with the AltaView bus
analyzer software (using the 1553 BM File Viewer) and the messages will be
displayed with IRIG time-stamps.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

35

ENET Device and Software Overview
Alta’s ENET (ENET) device is the industry’s first and only real-time Ethernet to
1553/ARINC devices. ENET is a small, rugged Ethernet appliance that provides
unprecedented real-time access to setup, transmission and monitor/receive
buffers for 1553 and ARINC applications. This discussion also applies to
PMCE and other Alta products that are Ethernet based – they will be
referred to as ENET going forward.

The ENET device essentially works the same as any of Alta’s cards. Alta has
replaced the normal PCI/PCI Express backplane interface with a real-time UDP
server. For most applications, you can run the same AltaAPI code on an ENET
device as you can any of our cards. Note that Ethernet does not provide a
hardware interrupt like PCI/PCI Express does, therefore ENET applications using
interrupts must use software polled interrupts.

All API acceses/functions are distilled down to a couple low-level ADT_L0
read/write memory accesses. A typical single memory transfer for a PCI card will
take ~one usec and this same transfer an Ethernet packet with your computer’s
Internet Protocol (IP) operating system stack can take 50-200+ uSec. For hard
real-time applications/simulations, Ethernet cannot replace PCI/PCI Express
cards that are installed in the backplane of a computer. Your computer’s
operating system (OS) Internet Protocol (IP) processing stack will cause much
more delay in memory accesses than a single PCI/PCI Express memory access
(~1 uSec) across a computer’s backplane.

ENET is not a significant source of Ethernet transfer delay. This is what is
unique about ENET and all other products on the market. ENET has a real-time
UDP server to accept memory read/write accesses in less than 10 uSec. Your
computer’s OS IP stack is the source of any delays in device memory accesses.
This Ethernet access delay is called “Path Delay”. Each computer is different
and Path Delay results can vary greatly: Contact Alta if you want to review if
ENET would be practical for your application configuration.

For most applications, ENET provides unparalled flexibility in configuring a
sytem for 1553 and ARINC connectivity. For example, unlike PCI or USB
devices, most OSes already support Ethernet socket programming, so
ENET can drop in almost any computer system! No more device driver
worries!

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

36

ENET Device Programming: ADCP
ENET products are controlled through an Alta UDP protocol called Alta Device
Control Protocol (ADCP) that provides device memory reads/writes in essentially
the same manner as PCI or PCIe backplane actions (but over Ethernet instead of
a computer backplane). UDP is inherently a “connectionless” IP protocol, so
Alta developed a small, fast UDP handshake protocol that ensures packet
delivery to the ENET device through a series of simple retries and failure
indications (and is much faster than TCP).

The Layer 0 and Layer 1 API manages the ADCP UDP handshake just like
PCI/PCIe transfers to make the Ethernet interface transparent to the customer’s
application verses a normal card PCI/PCIe transaction. You can even mix and
match card devices and ENET devices and the AltaAPI code will automatically
determine if a PCI access is needed or a UDP ADCP is performed (all based on
the Device ID, “DEVID,” parameter).

Alta’s example programs show how to write your application so it can run the
application with PCI/PCI Express cards or with ENET devices without even
changing the executable (by adding a couple lines of code)! This provideds
excellent portability and flexibility.

The API provides some additional functions for managing ENET devices. The
example program ADT_L1_1553_ex_bcbm1_Timing_Test.c demonstrates the
usage of some of these functions. The API functions specific to ENET devices
are:
 ADT_L1_ENET_SetIpAddr

ADT_L1_ENET_GetIpAddr
 ADT_L1_ENET_ADCP_GetStatistics

ADT_L1_ENET_ADCP_ClearStatistics
 ADT_L1_ENET_ADCP_Reset

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

37

Alta Passive Monitor Protocol (APMP)
In addition to ADCP devive control mode, ENET devices can be optionally
configured to simultaneously broadcast Ethernet packets containing 1553 or
ARINC receive data. This uses the Alta Passive Monitor Protocol (APMP) and
details are provided at the end of this section. Essentially, you can setup a
unique UDP packet on the ENET device to auto transmit 1553/ARINC packets as
they arrive so that any computer on the LAN can monitor or record data. There
are also several example programs you can cut/paste to implement a simple
UDP APMP monitor. This requires VERY little code and could be done in almost
any language or computer system.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

38

AltaAPI and ENET Programming
There is only one additional AltaAPI call required to make an application run with
a PCI/PCI Express card or with ENET.

Assigning IP Addresses
You must give the API the Server (ENET device) and Client (controlling
computer) IP Addresses BEFORE calling the normal initialization functions. This
is done with the ADT_L1_ENET_SetIpAddr function. This must be executed
before initializing the device.

 status = ADT_L1_ENET_SetIpAddr(DEVID, serverIpAddr, clientIpAddr);

The IP Address parameters are 32-bit values. An IP Address of 192.168.0.5
would be represented as 0xC0A80005 (192 = 0xC0, 168 = 0xA8, 0 = 0x00, 5 =
0x05).

The Alta example programs show how to check the DEVID parameter so that
you only need to make this function call if an ENET device is defined in the
DEVID parameter (a simple “IF” statement check will allow your application to run
with ENET or any other Alta device). Also, the example programs also show a
simple Macro to convert individual IP octets to the single ADT_L0_UINT32 for
serverIpAddr/clientIpAddr parameters.

Initialize the Device
After the IP Addresses have been set, the ENET device is initialized the same
way any other Alta device is initialized. Individual reads/writes on Ethernet are
slower than on PCI, so performing a full memory test on every initialization can
cause a delay. The code below demonstrates how to initialize the device without
running a full memory test on the device.

 printf("Initializing . . . ");
 status = ADT_L1_1553_InitDefault_ExtendedOptions(DEVID, 10,

ADT_L1_API_DEVICEINIT_NOMEMTEST);

Checking the ADCP Connection Status
The Alta API provides a function to check the status of the ADCP
communications with the ENET device. The function
ADT_L1_ENET_ADCP_GetStatistics returns the number of ADCP transactions,
retries, and failures. A “transaction” is a read or write operation consisting of a
command packet and a response packet. If there is a problem with the
transaction (error or timeout waiting for response), the transaction is retried. If
the transaction is not successful after three attempts then this is a failure.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

39

/* For ENET devices - Get and display the ENET ADCP statistics */
if ((DEVID & 0xF0000000) == ADT_DEVID_BACKPLANETYPE_ENET) {
 printf("\n**\n");
 printf("\nGetting ENET ADCP Statistics . . . ");
 status = ADT_L1_ENET_ADCP_GetStatistics(DEVID, &portnum,

&transactions, &retries, &failures);
 if (status == ADT_SUCCESS) {
 printf("Success.\n");
 printf("UDP Port %d: %d trans, %d retries, %d failures\n",

portnum, transactions, retries, failures);
 }
 else printf("FAILED! Error = %d\n", status);
 printf("\n**\n");
}

If you have no retries or failures then you have a perfect connection to the ENET
device. It is normal to see some retries. If you see some retries but no failures
this is acceptable. If you see failures then you have a problem with your
connection to the ENET device – this can be due to heavy loading of the
network, using a slow network connection, or other problems on the network.
The next section discusses system and network performance issues.

The function ADT_L1_ENET_ADCP_ClearStatistics can be used to reset the
counts of ADCP transactions, retries, and failures to zero.

System and Network Performance with ENET Devices
Network conditions can vary widely from one system to another and performance
is also affected by the type of network interface, the client computer operating
system, and other factors. ENET devices are real-time, meaning Ethernet UDP
packets are being turned-around/transmitted in 10-20 uSec! Your client
computer will not be that fast and your computer and LAN configuration will be
the limiting factory with high packet rate applications! (USB offers even worse
limitations as most computer systems limit USB polling rates to 1-8 mSec where
Ethernet is usually 10x or faster for packet rate processing).

The recommended configuration is a point-to-point connection (for
any real-time Ethernet application) or a good clean LAN system
between the client computer and the ENET device. Managed
switches often need to setup to handle ENET static IP addressing
and provide a high priority for ENET UDP port (see UDP Protocols
later in the manual for port information). Gigabit Ethernet provide
the best results for your computer. It is NOT recommended to use
anything slower than 100Mbit Ethernet. Wireless connections will

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

40

usually drop packets and this is NOT recommended unless you
characterize your LAN/WIFI sytem.

The example program ADT_L1_1553_ex_bcbm1_Timing_Test.c can be used
to characterize the performance of your system and network. Note that this
program can be used with any Alta device, not just ENET devices. Therefore
you can measure the performance with PCI or PCI Express devices if desired.
This program calculates the following metrics:
 32-bit Word Read Time – this is “Path Delay” for ENET devices
 32-bit Word Write Time
 BC CDP Read Time
 BC CDP Write Time
 BM CDP Read Time

The key value is the 32-bit Word Read Time or Path Delay for ENET devices.
This Path Delay is the total time it takes for the user program to initiate a read
operation, which the API executes as an ADCP transaction, where a command
packet is sent through the operating system network stack to the NIC to be
transmitted on the network, then waits for the response packet from the ENET
device, which must be received by the NIC, processed back up through the
operating system network stack and returned to the API, which extracts the read
data and returns it to the user application.

The other metrics (32-bit Word Write Time, BC CDP Read Time, BC CDP Write
Time, and BM CDP Read Time) are informative and can be useful, but will not be
discussed in detail here. We will focus on Path Delay for the discussion of
system and network performance with ENET devices.

The Path Delay for your system and network will determine how fast you can get
data from the ENET device. For the ENET-1553, this determines how many
1553 messages per second you can keep up with. For 1553 the most
demanding area is the Bus Monitor because CDP message buffers must be read
as fast as possible to prevent data loss. Remote Terminal and Bus Controller
applications are generally not as demanding in terms of the amount of data that
needs to be moved.

Note that the AltaView bus analyzer software measures Path Delay for ENET
devices and displays Path Delay and ENET statistics in the Device Info form.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

41

Measuring the Path Delay of your system and network gives you a
snapshot of your system performance at the time the measurement
was performed. This does NOT account for varying conditions on
the network, periods of heavy network traffic, or other variables that
affect the network. Therefore the Path Delay is a GENERAL
INDICATOR of the performance you can expect with the ENET device
on your system and network. ALTA CANNOT AND DOES NOT
GUARANTEE ERROR-FREE OPERATION ON YOUR NETWORK.

A majority of network performance is based on packets per second (so bit rate is
a factor, but computer systems usually are limited to how many packets per
second they can process). The following formula can be used to estimate the
number of 1553 messages per second that you can expect to keep up with (as
Bus Monitor) on your network with an ENET-1553 device:

MsgsPerSecond = 1 / PathDelayInSeconds
For example, if we have a Path Delay of 100 microseconds then we can expect
to keep up with a message rate of 10000 messages per second. Note that this is
a general, conservative estimate, not an absolute boundary – you can monitor
data at higher message rates but you may start to drop messages if you cannot
read the messages faster than they are received on the 1553 bus. High
message rates can also cause the software to slow down or lock up because it is
continuously processing UDP packets trying to read the messages.

ENET Performance
Alta has provided a lot of guidance and warnings on your computer’s path
delay and LAN delays or dropped WIFI packets, but in most applications,
ENET provides a fantastic, reliable, real-time Ethernet to 1553/ARINC
interface. 95% of applications will not even notice that ENET is connected
to their application verses a normal PCI or PCI Express card interface.
And with complete code portability and elimination of device driver issues,
ENET is a game changer for flexible system configurations.

Advanced ENET Auto-Setup and Control without API Control
Most Alta products contain boot-up flash (please check your product as PCMCIA
and Expresscards do not have flash) that can auto-setup BC, RT and BM data
structures (buffers). This can be very useful with ENET where your want to
remote the device and have it auto-boot with a setup image. Then you can use
AltaAPI or straight UDP accesses (BSD sockets) to read/write memory. For
example, it is common to have a simple RT with only a handful of subaddress
buffers needed. ENET could auto-boot with these buffers pre-defined and then

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

42

your code could use straight OS UDP services to read/write buffers. This feature
can greatly simplify system architectures and sometimes remove expensive code
verification steps. The flash auto-image boot requires detailed knowledge of card
memory setup and Alta would be glad to assist in setting up your device. Please
contact alta.support@altadt.com for more information.

ENET Ethernet UDP Protocols
ENET devices utilize real-time Alta UDP protocols used with Alta ENET products:
Alta Device Control Protocol (ADCP) and Alta Passive Monitor Protocol (APMP).
These protocols are used to communicate with Alta ENET devices over an
Ethernet network (instead of a computer backplane like PCI or PCIe).

Both UDP protocols are “real-time” meaning that the ENET device is servicing
and transmitting UDP packets in less than 20 uSec on the Ethernet wire. The
customer’s client computer network interface, OS IP stack and LAN configuration
is the source of all other possible “path delays” in the communication link. Alta
has sample API programs that the user can run to model their network system.

REFERENCES

• AltaAPI Users Manual
• IETF RFC 768 User Datagram Protocol
• IETF RFC 791 Internet Protocol v4
• IEEE 802.3 Ethernet

ALTA DEVICE CONTROL PROTOCOL (ADCP)
The Alta Device Control Protocol (ADCP) is used by the AltaAPI to control ENET
devices, primarily through memory read/write accesses (that mimic backplane
memory transfers). This is accomplished by a simple handshake of UDP packets
where an Alta header in the the UDP payload provides memory read and write
control and status information. This ADCP UPD protocol is detailed in the
following paragraphs.

NOTE: The ADCP protocol is abstracted/managed in the AltaAPI and for most
customers they do not need to the lower level details. These ADCP paragraphs
are provided for reference only and most customers can skip this section.

The Alta ENET device is an ADCP Server (memory server for ENET protocol
engine memory – described in AltaCore manuals), and only responds to
commands from a controller Client (customer’s computer). The Client initiates all
transactions and the Server ENET device only sends packets in response to

mailto:alta.support@altadt.com�

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

43

commands from the Client. The Client sends only one command per transaction
and the transaction is only completed by a response or time-out action from the
Server’s response

The ENET device only buffers one UDP packet at a time to ensure an handshake
cannot get interrupted (at the ENET device – it is up to the Client software to
ensure it processes the correct handshake packet, which can be checked with an
Alta header sequence number in the packet).

Basic Operations
The controller client performs all operations with single UDP packets, where each
packet is a command to the device. The basic operations are:

1. Device Reset
2. Read from device main memory (16-bit or 32-bit)
3. Write to device main memory (16-bit or 32-bit)
4. Read from device setup memory (32-bit)
5. Write to device setup memory (32-bit)

The 32-bit reads/writes in main memory are used for normal ENET device
operation (as described in the respective AltaCore manuals). The 16-bit
reads/writes in main memory and the 32-bit reads/writes in setup memory are
only used when programming the Protocol Engine firmware load into flash
memory. For comparison to Alta board-level products, the Alta PCI/PCIe devices
map main memory to BAR2 and map setup memory to BAR0.

The ENET device provides the echo handshake request (with or without memory
requested) in less than 20 uSec on the Ethernet wire. The Client’s computer or
network configuration is the source of all other “path delays” in the handshake.

Error Detection and Error Handling
The Ethernet packet includes a Frame Check Sequence using a 32-bit Cyclic
Redundancy Check (CRC). This is generated for transmitted packets and
checked for received packets at the MAC level. If the Server detects any MAC
errors (including CRC errors) in the command packet from the Client, the Server
will not process the command and it will send a response packet to the Client
with a failure status code.

The ADCP packet header contains a Sequence Number which is generated by
the controller Client. The sequence number is key to the ADCP protocol and is
verified by the client to detect dropped packets. The Server ENET device
responds to a command by sending a response packet back to the Client with

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

44

the same Sequence Number that it received in the command packet. This
response packet is the acknowledgement from the Server to the Client to indicate
that the memory command was received.

If the Client receives a response from the Server with the wrong Sequence
Number, with a failure status code, or if the Client does not receive a response at
all (and times-out), it can send the command again.

The time-out period to wait for a response from the Server is determined by the
client application, but a recommended value is a minimum of 50 milliseconds.
Likewise, the maximum number of times that the client will retry sending a
command packet is determined by the application, but a recommended number
is three retries. Alta provides the C source code for the client Layer 0 API to
show this standard BSD socket management for client computers.

UDP Port Numbers
The ADCP Server will always be UDP port number 55512. ADCP Clients will
start at UDP port number 55513. The AltaAPI, if the port is already in use the
Client will increment the port number until it finds one that is available.

ADCP Packet Format
The following diagram shows the UDP ADCP packet format:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

45

The first 8 words (16 bytes) make up the Alta Header, and consist of a Mode
word, a Sequence Number, Server Status Word, an alignment/market word that
is ASCII “ALTA”, a reserved word and then the Device Memory Byte Address
(Addr), Transfer Byte Count, and Payload (raw memory data) Byte Count. The
Transfer Payload is the raw memory that is read/written per the definition of the
Alta Header words.

All values in the packet are in “Big-Endian” (network) format. (The client will want
to use standard ntoh or hton type function calls to provide proper Endian formats
for their computer/OS).

The 32-bit value of the ASCII Alta marker word is 0xA1B2C3D4 and would be
stored as follows:
 First Byte: 0xA1
 Second Byte: 0xB2
 Third Byte: 0xC3
 Fourth Byte: 0xD4

The controller Client (user’s computer probably using the AltaAPI functions)
sends memory read or write command packets to the Server (ENET). The
Server performs the requested operation (as specified in the Mode word) and
sends a response packet back to the Client. The response packet includes the
Server Status Word, which indicates (AltaAPI) ADT_SUCCESS (zero) or
ADT_FAILURE (one). If the Server detected any errors in the command packet it
will indicate ADT_FAILURE in the response packet.

The ENET Server response packet shall use the same Seqence Number that it
received in the corresponding command packet (this should be verified to ensure
packet sequence integrity – and is checked the AltaAPI Layer 0).

For memory read/write operations, the ADCP header includes the starting byte
address (Device Mem Addr) and the number of bytes (Transfer Count). For
memory write operations, the Client sends the words to be written in the Transfer
Payload of the command packet. For memory read operations, the Server sends
the words read in the Transfer Payload of the response packet. As with all words
in the packet, the Transfer Payload will store 32-bit and 16-bit words in “Big-
Endian” format.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

46

Here are some examples:
(Please remember that this process is abstracted in the Layer 1 and 0 of the
AltaAPI and most customers will not need to know these low level
processes).

If the Client wants to read 49 32-bit words from main memory starting at byte
address 0x10000 it would send a command packet with a Mode word of
0x00000001 (32-bit read from main memory), the next sequence number (let’s
use 0x12345678 for this example), zero in the next four words of the header, a
Device Mem Addr of 0x00010000, and a Transfer Count of 0x000000C4 (49 * 4 =
196 = 0xC4). There would be no words in the Transfer Payload of the command
packet, so the Payload Size will be zero.

When the Server receives this packet it will perform the read operation and send
a response packet back to the Client. The Mode word will be 0x00000001 (same
as command packet), the Sequence Number will be 0x12345678 (same as
command packet), assuming there were no errors the Server Status will be
0x00000000 (indicating SUCCESS), the Device Mem Addr will be 0x00010000
(same as command packet), and the Transfer Count will be 0x000000C4 (same
as command packet). The Payload Size will also be 0x000000C4 and the
Transfer Payload will contain the words read from memory.

If the Client wants to write 49 32-bit words to main memory starting at byte
address 0x10000 it would send a command packet with a Mode Word of
0x00010000 (32-bit write to main memory), the next sequence number (let’s use
0x12345679), zero in the next four words of the header, a Device Mem Addr of
0x00010000, a Transfer Count of 0x000000C4, and a Payload Size of
0x000000C4, with the data to be written in the Transfer Payload.

When the Server receives this packet it will perform the write operation and send
a response packet back to the Client. The Mode word will be 0x00010000 (same
as command packet), the Sequence Number will be 0x12345679 (same as
command packet), assuming there were no errors the Server Status will be
0x00000000 (indicating SUCCESS), the Device Mem Addr will be 0x00010000
(same as command packet), and the Transfer Count will be 0x000000C4 (same
as command packet). The Payload Size will be zero because there are no words
in the Transfer Payload.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

47

Auto 1553/ARINC Ethernet BM/RX Bridging:
ALTA PASSIVE MONITOR PROTOCOL (APMP)
The Alta Passive Monitor Protocol (APMP) is provided by ENET devices to auto
transmit 1553 bus monitor CDPs or ARINC RXP (Receive) data to Ethernet
(thus, provides an auto bridge of time-stamped 1553 or ARINC data to Ethernet).
This is an automatic action from the ENET device, and once setup by the
customer (via ADCP), this action does not require any client handshake (even
from power-up).

The Alta ENET device is the APMP Server, which transmits UDP packets as it
receives messages on the data bus (1553, A429, etc.). Clients (any computer on
the Ethernet LAN) only receive packets. The ENET server only transmits APMP
packets, it does not receive packets. The AltaAPI is not used in this mode to
receive auto broadcast APMP packets – simply straight BSD sockets (or
whatever computer utility) that can read UDP packets.

UDP Port Numbers
Each ENET device will use a fixed pair of Server and Client port numbers.
These port numbers will be programmed into flash memory on the device when it
is configured for APMP operation (these values can be changed if needed –
contact Alta support for more information).

 Device 1 Device 2 Device 3 Device 4
ENET-1553
APMP Server
Port Number

56512 56514 56516 56518

ENET-1553
APMP Client
Port Number

56513 56515 56517 56519

ENET-A429
APMP Server
Port Number

56768 56770 56772 56774

ENET-A429
APMP Client
Port Number

56769 56771 56773 56775

The 2-channel ENET2-1553 will be TWO devices (one for each channel). Each
device needs to be configured as a different device number.

There is only one operation for APMP: transmit a UDP packet when either a
1553 message or group of ARINC RXPs (Receive Packets) has occurred. By

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

48

default, the ENET Server sends the APMP UDP broadcast with IP destination
address of 255.255.255.255. This is a valued stored in flash and can be
changed by the user with the AltaView ENET Config tool (as a Global device).

Error Detection and Error Handling
The Ethernet packet includes a Frame Check Sequence using a 32-bit Cyclic
Redundancy Check (CRC). This is generated for transmitted packets and
checked for received packets at the MAC level. If the Client detects any MAC
errors (including CRC errors) in the APMP packet from the Server, the Client will
discard the packet and will not use the data.

APMP Packet Format
The following diagrams show the general APMP packet:

The APMP packet format is very similar to the ADCP packet format The Mode
word should always be 0x00000001 (32-bit Read of main memory). The Server
Status Word should always have 0x0000 (Success) in the Server Status Code
and indicates the Payload Data Type (1553 message or ARINC/A429) in the
upper 16 bits. The Payload Size word contains the number of bytes in the
Transfer Payload.
All values in the packet are in “Big-Endian” format.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

49

The 32-bit value ASCII ALTA word is 0xA1B2C3D4 would be stored as follows:
 First Byte: 0xA1
 Second Byte: 0xB2
 Third Byte: 0xC3
 Fourth Byte: 0xD4

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

50

APMP 1553 CDP Packet Format - CDP
For 1553 APMP packets, the APMP Tranfer payload contains a 196 byte/49 word
Common Data Packet (CDP) per the following figure.

How to Start/Control 1553 APMP
The APMP mode is controlled through the Sequential Monitor Control Word (API
Function: ADT_L1_1553_BM_Config) by seting the following definitions.

ADT_L1_1553_BM_CSR_ENET_APMP_ENABLE 0x00000100
ENET APMP Enable
This bit is set by the user to enable the APMP auto CDP/UDP broadcasting.
When set, the ENET-1553 will auto broadcast CDP/UDP packets on Ethernet
connection

ADT_L1_1553_BM_CSR_ENET_APMP_PEIRIG 0x00000200
ENET APMP Insert PE/IRIG Time
This bit is set by the user to direct the PE to insert the last latched PE and IRIG
Time values in to APMP CDP word offsets 0x0C through 0x18. This allows the
users Ethernet programs listening to APMP packets to have PE+IRIG absolute

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

51

time along with the normal CDP Time High/Low relative time (to time sync data
capture). This bit must be set with Bit
ADT_L1_1553_BM_CSR_ENET_APMP_ENABLE. The time values would be
the same as setting the Read IRIG control bit in the Root PE Control Word
(0x0000).

ADT_L1_1553_BM_CSR_ENET_APMP_PEINTV 0x00000400
ENET APMP Insert PE/Interval Timer
This bit is set by the user to direct the PE to insert the last latched PE and
Interval Timer (user PPS or clock) in to APMP CDP word offsets 0x0C through
0x18. Ethernet programs listening to APMP packets to have PE+ Interval/PPS
absolute time along with the normal CDP Time High/Low relative time (to time
sync data capture). This bit must be set with Bit
ADT_L1_1553_BM_CSR_ENET_APMP_ENABLE. The time values would be
the same as setting the Read Time control bit in the Root PE Interval Timer
register (0x004C).

Once the BM is started, then the ENET will automatically start sending APMP
UDP CDP packets within 10 uSec after the completion of the 1553 message.
There are example programs provided to show setup and reading of APMP
packets.

ENET APMP 1553 CDP Format: PE + IRIG or Interval Timer Inserts
For ENET-1553 product, the CDP can have a different format if the user selects
the APMP Insert PE/Intrvl or PE/IRIG Time options in the Root SM CSR
registers. These time formats are the SAME as if IRIG time is read from the Root
PE Control register (for PE + IRIG Time) or the Read Timer in the Root Interval
Timer Control Register (Interval Timer word would in place of IRIG Time High).
All other CDP values are the same as normal SM/BM functions. Please see the
following bookmarks in the AltaCore-1553 manual for full details.

Root IRIG Time High & Low: 0x0024/28
Root Interval Timer: 0x004C

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

52

ARINC APMP Packet Format
The following figure shows the ARINC APMP Packet format.

For A429 payload, the Transfer Payload will contain the Alta A429 Receive
Packet (RXP), which is 4 words (16 bytes) plus 4 fixed time words at the
beginning of the payload. The time words are selected in AltaCore-ARINC Root
PE Control Word for PE + IRIG. If not selected, these words are set to zero.
ARINC APMP will sent every 200 mSec or 85 labels from all selected channes,
whichever comes first.

Please see the AltaCore-ARINC Receive section for details on ARINC RXPs
(simple 4 word array that includes a control word, 2 time-stamp words and
one word with raw ARINC data).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

53

How to Start/Control ARINC APMP
The APMP mode is controlled through the Root PE CSR Register (0x0000
offset). The user should use an ADT_L1_A429_Read/WriteDeviceMem32()
function to set the following option bits. In addition, the customer will set the
ADT_L1_A429_RXREG_SETUP1_MCRX option when the Receive channel is
initialization (in ADT_L1_A429_RX_Channel_Init() function.

ADT_L1_A429_PE_CSR_ENET_APMP_ENABLE 0x00000100
ENET APMP Enable
This bit is set by the user to enable the APMP auto CDP/UDP broadcasting.
When set, the ENET-1553 will auto broadcast CDP/UDP packets on Ethernet
connection

ADT_L1_ A429_PE _CSR_ENET_APMP_PEIRIG 0x00000200
ENET APMP Insert PE/IRIG Time
This bit is set by the user to direct the PE to insert the last latched PE and IRIG
Time the first 4 words of the APMP Transfer Payload (shown above). This allows
the users Ethernet programs listening to APMP packets to have PE+IRIG
absolute time along with the normal RXP Time High/Low relative time (to time
sync data capture). This bit must be set with
ADT_L1_A429_PE_CSR_ENET_APMP_ENABLE. The time values would be
the same as setting the Read IRIG control bit in the Root PE CSR Word.

ADT_L1_ A429_PE _CSR_ENET_APMP_PEINTV 0x00000400
ENET APMP Insert PE/Interval Timer
This bit is set by the user to direct the PE to insert the last latched PE and
Interval Timer (user PPS or clock) in to first 3 words of the APMP Transfer
Payload (shown above – Interval Value replaces IRIG Time High). Ethernet
programs listening to APMP packets to have PE+ Interval/PPS absolute time
along with the normal RXP Time High/Low relative time (to time sync data
capture). This bit must be set with
ADT_L1_A429_PE_CSR_ENET_APMP_ENABLE. The time values would be
the same as setting the Read Time control bit in the Root PE Interval Timer
register.

Once the receive channel(s) are started, then the ENET will automatically start
sending APMP UDP RXP packets within 10 uSec after the completion of the last
RXP of the APMP packet. There are example programs provided to show
setup and reading of APMP packets.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

54

Here is a code snippet for updating the ARINC Device CSR with APMP options:

ADT_L0_UINT32 data, status;

/* Get Current CSR */
status = ADT_L1_ReadDeviceMem32(DEVID, ADT_L1_A429_PE_ROOT_CSR, &data, 1);
if (status == ADT_SUCCESS)
{
 /* Update with APMP Options – “OR” options together */
 data |= ADT_L1_1553_BM_CSR_ENET_APMP_ENABLE;

 /* Update CSR */
 status = ADT_L1_WriteDeviceMem32(DEVID, ADT_L1_A429_PE_ROOT_CSR, &data, 1);
 if (status != ADT_SUCCESS)
 printf("\nERROR on WRITE %d", status);
}

ENET APMP ARINC Format: PE + IRIG or Interval Timer Inserts
For ENET-A429 product, the first 4 words of the APMP Transfer Payload (shown
above and enabled with the CSR bits described on the previous page) can have
the PE 64-bit time and either IRIG or Interval Timing word (word 3 only in place
of IRIG Time High). These time formats are the SAME as if IRIG time is read
from the Root PE Control register (for PE + IRIG Time) or the Read Timer in the
Root Interval Timer Control Register. . Please see the following bookmarks in
the AltaCore-ARINC manual for full details.

Root IRIG Time High & Low: 0x0024/28
Root Interval Timer: 0x004C

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

55

MIL-STD-1553 Layer 1 Programming
AltaAPI Layer 1 (L1) programming follows the same steps as described in the
last section. A brief example for an RT function will be provided and then this
section will detail L1 programming of each major function of Alta 1553 Devices,
including:

• 1553 Device Initialization and Closure
• Bus Controller (BC)
• Remote Terminal (RT)
• Sequential Monitoring (Bus Monitor - BM)
• Playback (PB)
• Interrupt Handling
• Signal Generator (SG)
• Signal Capture (SC)

Here is a simple program (without error checking) of an RT that would have all
Receive and Transmit Subaddresses and Mode Code buffers automatically
wrapped.

#include <stdio.h>
#include "ADT_L1.h"

/* DEVID is the 1553 Device Channel Code from ADT_L0.h */
#define DEVID (ADT_PRODUCT_PMC1553 |
 ADT_DEVID_BOARDNUM_01 |
 ADT_DEVID_CHANNELTYPE_1553 |
 ADT_DEVID_CHANNELNUM_01)

int main()
 {
 ADT_L0_UINT32 status, RTnum = 1;

 status = ADT_L1_1553_InitDefault(DEVID, 10);
 status = ADT_L1_1553_RT_Init(DEVID, RTnum);
 status = ADT_L1_1553_RT_Enable(DEVID, RTnum);
 status = ADT_L1_1553_RT_Start(DEVID);
 /* Your application here */
 status = ADT_L1_1553_RT_Stop(DEVID);
 status = ADT_L1_1553_RT_Close(DEVID, RTnum);
 status = ADT_L1_CloseDevice(DEVID);
}

This program would not really do anything except initialize the device, initialize
the RT, enable and start the RT and then close it – this is not a practical

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

56

application, but these are the basic steps for most 1553 functions (just substitute
RT with BC or BM, etc…). The following sections will detail each step.

A key data structure for any RT, BC, BM or PB function is the Common
Data Packet (CDP) – you should review this data structure in the ADT_L1.h
and AltaCore-1553 manual. The CDP is reviewed in later 1553 sections of this
manual. This is powerful part of the Alta design – one common data structure for
any 1553 function (a first in the industry and can greatly simplify 1553
programming to more resemble a general network device).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

57

1553 (M1553) Device & Protocol Initialization & Closing
Initialization functions specific to the MIL-STD-1553 protocol are provided in the
file ADT_L1_1553_General.c.

The L1 API provides the low level steps to allow customization of the initialization
and protocol setup, but most customers will use one of two functions: These
functions combine low level setup (memory mapping) and device/protocol steps
for standard 1553B protocol in a single function call (these are used by 99% of
1553 applications).

• ADT_L1_1553_InitDefault() – This is the recommend function!
This function performs memory tests and will error out if the 1553 device
has not been closed properly. The memory test of this function can take
seconds, but overall, this function is the safest and best to use for test
applications.

 status = ADT_L1_1553_InitDefault(DEVID, 10);
 if (status == ADT_SUCCESS)
 {
 // Continue Application
 }
 else printf("FAILURE - Error = %d\n", status);

• ADT_L1_1553_InitDefault_ExtendedOptions()
This function provides the user options to control initialization with options
to hard reset the PE (device channel) low-level registers, override
previous bad shutdowns and bypass memory tests. This function can
provide very fast startup (usually <50-100 msec), but can also require the
application to better manage shutdowns and memory de-allocations.

 status = ADT_L1_1553_InitDefault_ExtendedOptions(DEVID, 10,
 ADT_L1_API_DEVICEINIT_FORCEINIT |
 ADT_L1_API_DEVICEINIT_NOMEMTEST |
 ADT_L1_API_DEVICEINIT_ROOTPERESET);

 if (status == ADT_SUCCESS)
 {
 // Continue Application
 }
 else printf("FAILURE - Error = %d\n", status);

Note: All the initialization function call examples allocate memory
for an interrupt queue with a depth of 10 entries. The interrupt
queue depth is set by the user and is determined by how often the
application expects the device to generate interrupts and how

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

58

quickly the application will be able to service interrupts. This is
discussed further in the section on interrupt operation.

 The Extended “options” are defined as follows:

#define ADT_L1_API_DEVICEINIT_FORCEINIT 0x00000001
 Forces Initialization Regardless of Current API State. Often
 used from application crashes or incorrect closing of
 application.

#define ADT_L1_API_DEVICEINIT_NOMEMTEST 0x00000002
 Skips API Memory Test and Initialization (that can take
 several seconds).
#define ADT_L1_API_DEVICEINIT_ROOTPERESET 0x80000000

 Forces a hard reset of the device channel (not the card).
 This clears all 1553 low level control registers and halts any
 transmission (BC or RT Responses) and reception of data.

#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004
 Skips loading of the interrupt kernel plug-in. Not
 recommened for most applications and not shown.

The ADT_L1_API_DEVICEINIT_NOKP option can be used to
bypass loading the driver kernel plug-in but in most cases this
option should NOT be set. This option only applies to platforms
that use the Jungo WinDriver software for the device driver
(Windows, Linux, Solaris). If this option is used then the application
cannot use hardware interrupts. The kernel plug-in is required for
hardware interrupts.

The ADT_L1_API_DEVICEINIT_FORCEINIT option should ONLY
be used in development and testing. This option is provided for
cases where the device may not have been closed properly and is
used to override the ADT_ERR_DEVICEINUSE error. This option
should NOT be used as the normal initialization method for your
application, because it bypasses protection against two applications
using the same device.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

59

Advance 1553 Initialization Options – Manual Device & Protocol Setup
(1553A and Other Non 1553B Variants).
The “Default” functions described above provide the setup for standard 1553B
protocols, and these functions actually call the following 3 functions for you to
simplify setup:
 ADT_L1_InitDevice() – Basic Device Connection to Driver
 ADT_L1_1553_InitChannel() – Initialization of 1553 Protocol Engine
 ADT_L1_1553_SetConfig() – Sets key 1553 Protocol Settings

After the API is initialized (ADT_L1_InitDevice) for the device, the 1553 channel
must be initialized and configured. The ADT_L1_1553_InitChannel function
initializes the 1553 channel registers and allocates the interrupt queue.

 /* Initialize the CHANNEL, allocate interrupt queue */
 printf("Initializing Channel and Interrupt Queue. . . ");
 status = ADT_L1_1553_InitChannel(DEVID, 10);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The ADT_L1_1553_SetConfig function sets protocol options, selects internal or
external bus, and sets the status response timeout value (used by BC and BM).

 /* Set 1553B, RT31 is BROADCAST, external bus, 14us timeout */
 printf("Setting options . . . ");
 status = ADT_L1_1553_SetConfig(DEVID, 1, 1, 1, 0, 14);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

These functions perform the low level initialization, 1553 channel setup and
custom protocol configuration. If you need to initialize with non 1553B protocol
settings (such as older 1553A), then please review these functions in the
reference section of this L1 section to decided what values to provide these
functions.

“RT Live” Initialization – MIL-STD-1760 Startup
If the channel is configured to come up “live” as a remote terminal (using the
external RT address lines), then use the ADT_L1_1553_InitChannelLive function.
This function is basically identical to the ADT_L1_1553_InitChannel function, but
does not clear the RT control blocks, so there will be a much shorter transition
period (when the RT will stop responding) as the application takes over as the
RT. There is an example program of RT Live Startup provided in the distribution.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

60

Closing the Device – Last Step of an Application
At the end of an application, or when the application no longer needs to use the
Alta device it can close the API as follows:

 ADT_L1_CloseDevice(DEVID);

This function frees resources, closes memory management, un-maps memory,
and detaches from the device. No API calls should be made for the device after
the ADT_L1_CloseDevice call has been made. The device must be initialized
again before use.

Overview of MIL-STD-1553 Functions
Once the 1553 device (channel) has been initialized per the previous pages, the
user’s application is ready to setup 1553 functions. One of the best references to
get started quickly are the numerous MIL-STD-1553 (M1553) example programs
provided – please see these programs for quick start of your application
(locations given in previous pages).

The following pages will detail each of the major 1553 functions and how to setup
data structures, read and write data and manage timing. Before starting each
section, though, we should introduce a key data structure that is used for all
BC,RT, BM and Playback functions – the Common Data Packet (CDP).

The 1553 Common Data Packet (CDP)
Alta 1553 devices use a “Common Data Packet” (CDP) data structure for Bus
Monitor (BM), Remote Terminal (RT), Bus Controller (BC) data buffers and
Playback API functions. This offers a huge advantage over older 1553 designs
as the one common data structure is utilized for data buffering of BC, RT and
Monitor functions – no longer do you need to have 6, 10 or more different data
structures for each function; this can greatly simplify you software management
and makes 1553 packets more like a standard network UDP type packet.

Each CDP structure contains information on one 1553 message. The CDP
controls most buffer functions such as error injection/detection, interrupts
(including mask/compare interrupts per CDP), CDP and intermessage time
stamps. This complete information allows the RT, BC or Monitor application to
have a complete snapshot of all message information/status (most older designs
would only provide partial message information depending on which mode was
being used)

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

61

The Layer 1 API represents the CDP with the structure ADT_L1_1553_CDP,
which is defined in the ADT_L1.h header file.
typedef struct adt_l1_1553_cdp {
 ADT_L0_UINT32 NextPtr; /*!< \brief CDP next pointer */
 ADT_L0_UINT32 BMCount; /*!< \brief BM message count */
 ADT_L0_UINT32 APIinfo; /*!< \brief Reserved for API */
 ADT_L0_UINT32 Rsvd1; /*!< \brief Reserved */
 ADT_L0_UINT32 Rsvd2; /*!< \brief Reserved */
 ADT_L0_UINT32 MaskValue; /*!< \brief Mask value */
 ADT_L0_UINT32 MaskCompare; /*!< \brief Mask compare value */
 ADT_L0_UINT32 CDPControlWord; /*!< \brief CDP control word */
 ADT_L0_UINT32 CDPStatusWord; /*!< \brief CDP status word */
 ADT_L0_UINT32 TimeHigh; /*!< \brief Timestamp, upper 32-bits */
 ADT_L0_UINT32 TimeLow; /*!< \brief Timestamp, lower 32-bits */
 ADT_L0_UINT32 IMGap; /*!< \brief Intermessage gap, 100ns LSB */
 ADT_L0_UINT32 Rsvd3; /*!< \brief Reserved */
 ADT_L0_UINT32 CMD1info; /*!< \brief Command 1 info */
 ADT_L0_UINT32 CMD2info; /*!< \brief Command 2 info */
 ADT_L0_UINT32 STS1info; /*!< \brief Status 1 info */
 ADT_L0_UINT32 STS2info; /*!< \brief Status 2 info */
 ADT_L0_UINT32 DATAinfo[32]; /*!< \brief Data word info */
} ADT_L1_1553_CDP;

The fields in this structure correspond directly to the words in the CDP structure
used by the 1553 Protocol Engine (PE) on the board (see next figure). This is
discussed in detail in the AltaCore 1553 Protocol Engine Specification/User’s
Manual.

The ADT_L1.h also provide bit field definitions for your application to set and
mask settings as needed:
/* 1553 CDP Offsets (BYTE offsets) */
/* *** AltaCore-1553 Manual: Common Data Packet (CDP) *** */
#define ADT_L1_1553_CDP_NEXT 0x0000
#define ADT_L1_1553_CDP_BMCOUNT 0x0004
#define ADT_L1_1553_CDP_RESV_API 0x0008
#define ADT_L1_1553_CDP_RAPI_RT_ID 0x80000000
#define ADT_L1_1553_CDP_RAPI_MC_ID 0x40000000
#define ADT_L1_1553_CDP_RAPI_RT_RTADDR 20
#define ADT_L1_1553_CDP_RAPI_RT_TR 18
#define ADT_L1_1553_CDP_RAPI_RT_SA 12
#define ADT_L1_1553_CDP_RAPI_RT_BUFNUM 0
#define ADT_L1_1553_CDP_RAPI_BC_ID 0x20000000
#define ADT_L1_1553_CDP_RAPI_BC_MSGNUM 12
#define ADT_L1_1553_CDP_RAPI_BC_BUFNUM 0
#define ADT_L1_1553_CDP_RAPI_BM_ID 0x10000000
#define ADT_L1_1553_CDP_RAPI_BM_BUFNUM 0
#define ADT_L1_1553_CDP_RSVD1 0x000C
#define ADT_L1_1553_CDP_RSVD2 0x0010
#define ADT_L1_1553_CDP_MASKVALUE 0x0014
#define ADT_L1_1553_CDP_MASKCOMPARE 0x0018
#define ADT_L1_1553_CDP_CONTROL 0x001C
#define ADT_L1_1553_CDP_CONTROL_TXERRINJ 0x00000002
#define ADT_L1_1553_CDP_CONTROL_INTERR 0x00000010
#define ADT_L1_1553_CDP_CONTROL_INTNOERR 0x00000020

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

62

#define ADT_L1_1553_CDP_CONTROL_INTCMPTRUE 0x00000040
#define ADT_L1_1553_CDP_CONTROL_LEDONCMPLT 0x00000400
#define ADT_L1_1553_CDP_CONTROL_TRGOUTERR 0x00002000
#define ADT_L1_1553_CDP_CONTROL_TRGOUTNOERR 0x00004000
#define ADT_L1_1553_CDP_CONTROL_TRGOUTCMPTR 0x00008000
#define ADT_L1_1553_CDP_CONTROL_CDPCMP 16
#define ADT_L1_1553_CDP_CONTROL_FRCDWCNUM 24
#define ADT_L1_1553_CDP_CONTROL_FRCDWCON 0x40000000
#define ADT_L1_1553_CDP_STATUS 0x0020
#define ADT_L1_1553_CDP_STATUS_MSGWC 0x0000003F
#define ADT_L1_1553_CDP_STATUS_BUSAB 0x00000040
#define ADT_L1_1553_CDP_STATUS_TWOBUSERR 0x00000100
#define ADT_L1_1553_CDP_STATUS_STSWRNGADD 0x00000200
#define ADT_L1_1553_CDP_STATUS_NORESP 0x00000400
#define ADT_L1_1553_CDP_STATUS_WCERR 0x00000800
#define ADT_L1_1553_CDP_STATUS_PARERR 0x00001000
#define ADT_L1_1553_CDP_STATUS_BITERR 0x00002000
#define ADT_L1_1553_CDP_STATUS_SYNCERR 0x00004000
#define ADT_L1_1553_CDP_STATUS_NOERR 0x00008000
#define ADT_L1_1553_CDP_STATUS_CMPTRUE 0x00010000
#define ADT_L1_1553_CDP_STATUS_SPURMSG 0x04000000
#define ADT_L1_1553_CDP_STATUS_BCRTMSG 0x08000000
#define ADT_L1_1553_CDP_STATUS_RTBCMSG 0x10000000
#define ADT_L1_1553_CDP_STATUS_RTRTMSG 0x20000000
#define ADT_L1_1553_CDP_STATUS_MCMSG 0x40000000
#define ADT_L1_1553_CDP_STATUS_BRDCSTMSG 0x80000000
#define ADT_L1_1553_CDP_TIMEHIGH 0x0024
#define ADT_L1_1553_CDP_TIMELOW 0x0028
#define ADT_L1_1553_CDP_IMGAP 0x002C
#define ADT_L1_1553_CDP_RSVD3 0x0030
#define ADT_L1_1553_CDP_CMD1INFO 0x0034
#define ADT_L1_1553_CDP_CMD2INFO 0x0038
#define ADT_L1_1553_CDP_STS1INFO 0x003C
#define ADT_L1_1553_CDP_STS2INFO 0x0040
#define ADT_L1_1553_CDP_DATA1INFO 0x0044
#define ADT_L1_1553_CDP_WRDINFO_1553BITS 0x0000FFFF
#define ADT_L1_1553_CDP_WRDINFO_GAPTIME 0x00FF0000
#define ADT_L1_1553_CDP_WRDINFO_GAPTIMEOSET 16
#define ADT_L1_1553_CDP_WRDINFO_RXADDTXGAP 0x02000000
#define ADT_L1_1553_CDP_WRDINFO_RXNORESP 0x04000000
#define ADT_L1_1553_CDP_WRDINFO_RXWCERR 0x08000000
#define ADT_L1_1553_CDP_WRDINFO_RXTXPARERR 0x10000000
#define ADT_L1_1553_CDP_WRDINFO_RXTXMANERR 0x20000000
#define ADT_L1_1553_CDP_WRDINFO_RXTXSYNCERR 0x40000000
#define ADT_L1_1553_CDP_WRDINFO_RXBUSAB 0x80000000

The L1 API provides read and write functions for CDPs for each 1553 operational
mode (BC, RT, BM). Each BC, RT or BM function can usually define one to N
buffers for each Subaddress/mode code or message as appropriate. Also, the
API provides functions to access only sub-portions of the CDP for applications
that only need to update small areas like a couple data words or a single control
word (without having to write/read all 49 words of the structure).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

63

Error Injection/Detection for Data Words of BC or RT Messages
The CDP provides low level error detection status and error injection options for
any transmit data words. This can be very useful for development testing for
design verification. The CDP Control Word provides on/off bits for error injection
on transmit data words, and then each data word itself has the low-level controls
for the type of error to be injected on the data word. Command Words and
Status Word error injection is provided at the BC Control Block (BCCB) and RT
Control Block data structure level, respectively.

Please review the following figure and #define definitions above to see error
injection settings for transmit data words in CDPs. You should also review the
AltaCore-1553 manual, CDP section for details on these advanced settings.
Please see the BC or RT discussons for further discussion on Command or
Status Word error injection.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

64

Setting Message (CDP) Interrupts, Triggers, etc…
The CDP Control Word provides many different options for setting trigger,
interrupts, Flashing the user LED, etc. A common application is setting the
interrupt bit to signal the application that the CDP (and this the desired BM, BC or
RT message) has been received. The trigger output on error could be useful to
set an external trigger to an oscilloscope to look for bus error conditions.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

65

1553 Bus Monitor Operation
The 1553 Bus Monitor (BM) functions are defined in the file ADT_L1_1553_BM.c.
The BM API functions allocate and manage a circular list of CDP structures
(making a sequential monitor). Each CDP stores one 1553 message.
The following figure shows basic BM programming.

Figure BM-1: Basic Programming Flow

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

66

The following sample code shows the basic BM function calls (there are more
complete BM example programs provided in the software distribution – including
one simple example that archives all messages to a file):

#include <stdio.h>
#include "ADT_L1.h"

#define DEVID (ADT_PRODUCT_PMC1553 | ADT_DEVID_BOARDNUM_01 |
 ADT_DEVID_CHANNELTYPE_1553 | ADT_DEVID_CHANNELNUM_01)

int main() {
 ADT_L0_UINT32 status, rtAddr, numMsgs, i;
 ADT_L1_1553_CDP bmMessages[10];

 status = ADT_L1_1553_InitDefault(DEVID, 10);
 // Set the BM Subaddress Filters for Each RT
 for (rtAddr=0; rtAddr<32; rtAddr++)
 {
 status = ADT_L1_1553_BM_FilterWrite(DEVID, rtAddr,
 0xFFFFFFFF, 0xFFFFFFFF);
 }
 status = ADT_L1_1553_BM_BufferCreate(DEVID, 20);
 status = ADT_L1_1553_BM_Start(DEVID);
 // Repeat this next funtion to keep reading BM CDPs
 status = ADT_L1_1553_BM_ReadNewMsgs(DEVID, 10, &numMsgs,
 bmMessages);
 status = ADT_L1_1553_BM_Stop(DEVID);
 status = ADT_L1_CloseDevice(DEVID);
}

The following paragraphs will detail each step above.

BM Filters
Prior to starting BM storage, the BM provides filters to specify which messages to
store by RT address, transmit/receive, and sub-address. The filters are
configured using the ADT_L1_1553_BM_FilterWrite function.

 printf("Writing BM Filters (capture all) . . . ");
 for (rtAddr=0; rtAddr<32; rtAddr++) {
 status = ADT_L1_1553_BM_FilterWrite(DEVID, rtAddr, 0xFFFFFFFF, 0xFFFFFFFF);
 }

The example above configures the BM filters to capture all possible messages.
The RT address is the second parameter. The third parameter specifies the
RECEIVE sub-addresses to capture. Each bit in the 32-bit word corresponds to
a receive sub-address – for example if bit 5 is set then messages for receive sub-
address 5 will be captured, if bit 5 is clear then messages for receive sub-

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

67

address 5 will not be captured. The fourth parameter specifies the TRANSMIT
sub-addresses to capture and the bits are used the same way.

BM Buffer (CDP) Allocation
The function ADT_L1_1553_BM_BufferCreate allocates CDP buffers that the BM
uses to store messages. The function ADT_L1_1553_BM_BufferFree frees the
BM buffer memory and un-initializes the BM.

 status = ADT_L1_1553_BM_BufferCreate(DEVID, 20);

The example above allocates 20 CDP buffers for the BM in a circular list. This
allows the BM to store the 20 most recent messages. After 20 messages are
received the BM will overwrite old messages as more messages are captured.

The number of BM buffers to allocate is determined by how much message traffic
is expected and by how often the application software can read messages out of
the buffer. For example, the worst-case (fastest) 1553 message traffic would be
a series of broadcast mode codes without data (one word per message) with a
minimum inter-message gap (4 microsecond gap) – this would give us a
message every 24 microseconds. For easy math we will round this up to one
message every 25 microseconds, or 40,000 messages per second. Let’s
assume that our software can check the device for new messages every 10
milliseconds (100 times per second). We could get up to 400 new messages in
10 milliseconds if we are getting 40,000 messages per second. Now we want to
add a safety margin just in case we don’t always get around to reading the buffer
every 10 milliseconds, so we could round this up to 500 message buffers needed
on the board. If we REALLY want to make sure we won’t miss any messages we
could double this and allocate 1000 message buffers for the BM.

This example demonstrates that 1000 (or even 500) CDP buffers is all you need
to allocate on the device for any possible 1553 traffic as long as you can check
for new messages every 10 milliseconds or so. The AltaView bus analyzer
software allocates 1000 CDP buffers for the bus monitor and checks for new
messages every 10 milliseconds.

The CDP structure provides a field called “BMCount”. This gives us a “sequence
number” for each message received by the BM. This number should increment
by one on each new message in the BM buffer. Therefore we can check this
field as we read messages from the BM to tell us if the software has fallen behind
and missed any messages.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

68

BM Control Functions
Bus monitoring can be started and stopped with the functions
ADT_L1_1553_BM_Start and ADT_L1_1553_BM_Stop.

BM Message Read Functions
Messages can be read from the BM buffer with the function:

 ADT_L1_1553_BM_ReadNewMsgs()

This is a VERY powerful, yet, simple function. This function will read up to N
CDPs (in the example code above, 10 messages where the maximum), and then
tells the application how many CDPs where actually read (numMsgs) and then
populates the CDP array (bmMessages[]) with the read CDPs.

For example, from the “bm2.c” example program we have a simple loop to read
CDPs and save to file:
totalMsgCount = 0;
while (totalMsgCount < maxMsgs)
{
 /* This will read up to 1000 messages from the board (which is the
maximum our bmMessages array can hold in this example).
 */
 status = ADT_L1_1553_BM_ReadNewMsgs(DEVID, 1000, &numMsgs,
 bmMessages);
 if (status == ADT_SUCCESS) {
 totalMsgCount += numMsgs;

 /* Write the messages to the CDP file */
 for (i=0; i<numMsgs; i++)
 {
 fwrite(&bmMessages[i], sizeof(ADT_L1_1553_CDP), 1,
 fp);
 }
 }
}

That’s it! This simple code snippet would write all 1553 messages (CDPs) to a
file.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

69

1553 Remote Terminal Operation
The 1553 Remote Terminal functions are defined in the file ADT_L1_1553_RT.c.
There are numerous RT example programs provided that show a wide range of
simple to more complex RT operations. Use one of these programs to jump-start
your application.

On a 1553 network, there are 32 possible RT addresses (0-31). Each RT can
have up to 32 receive sub-addresses (0-31) and up to 32 transmit sub-addresses
(0-31), and a number of pre-defined message modes called “mode codes”. Each
sub-address or mode code can have one or more CDP buffers in a circular link-
list where each CDP is for one 1553 message. The following figure shows basic
RT program flow.

Figure RT-1: Basic RT Programming Flow

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

70

Here is a simple sample code snippet to setup an RT:
#include <stdio.h>
#include "ADT_L1.h"

/* DEVID is the 1553 Device Channel Code from ADT_L0.h */
#define DEVID (ADT_PRODUCT_PMC1553 |
 ADT_DEVID_BOARDNUM_01 |
 ADT_DEVID_CHANNELTYPE_1553 |
 ADT_DEVID_CHANNELNUM_01)
int main()
{
 ADT_L0_UINT32 status, RTnum=1, tr=0, saAdd=1,
 modeCode=2, CDPnum=0;
 ADT_L1_1553_CDP myCdp;

 status = ADT_L1_1553_InitDefault(DEVID, 10);
 status = ADT_L1_1553_RT_Init(DEVID, RTnum);
 status = ADT_L1_1553_RT_Enable(DEVID, RTnum);
 status = ADT_L1_1553_RT_Start(DEVID);
 /* Your application here */
 status = ADT_L1_1553_RT_SA_CDPRead(DEVID, RTnum, tr,
 subAdd, CDPnum, &myCdp);
 status = ADT_L1_1553_RT_SA_CDPWrite (DEVID, RTnum, tr,
 subAdd, CDPnum, &myCdp);
 status = ADT_L1_1553_RT_MC_CDPRead (DEVID, RTnum, tr,
 modeCode, CDPnum, &myCdp);
 status = ADT_L1_1553_RT_MC_CDPWrite (DEVID, RTnum, tr, ,
 modeCode, CDPnum, &myCdp);

 status = ADT_L1_1553_RT_Stop(DEVID);
 status = ADT_L1_1553_RT_Close(DEVID, RTnum);
 status = ADT_L1_CloseDevice(DEVID);
}

This program would not really do anything except initialize the device, initialize
the RT, enable and start the RT and then close it – this is not a practical
application, but these are the basic steps for many RT applications. Let’s now
review these steps in detail.

RT Initialization
Each RT address to be used must be initialized using the ADT_L1_1553_RT_Init
function.
 printf("Initializing RT 1 . . . ");
 status = ADT_L1_1553_RT_Init(DEVID, 1);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

71

This function initializes the data structures for the RT address and allocates a
default CDP data buffer that is used for all sub-addresses. Therefore, if we
enabled the RT (ADT_L1_1553_RT_Enable) and started RT operation
(ADT_L1_1553_RT_Start), the RT would respond to commands and all sub-
addresses would be “wrapped” (if the BC sends a BC-RT message with a given
set of data, then sends a RT-BC command, it will get the same set of data back
in the RT-BC message).

Single RT and Multiple RT Configurations
(Most applications skip this paragraph – this is step is only needed for Single RT
and External RT Address Configurations).

Alta 1553 products that support RT functionality are available in single or multiple
RT configurations. Multiple RT products can operate in either single or multiple
RT mode. Single or multiple RT mode is selected by the function
ADT_L1_1553_SetConfig.

 /* Set single RT, 1553B, RT31 is BROADCAST, external bus, 14us timeout */
 printf("Setting options . . . ");
 status = ADT_L1_1553_SetConfig(DEVID, 0, 1, 1, 0, 14);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The second parameter to ADT_L1_1553_SetConfig selects the mode – if this
parameter is zero then single RT mode is selected, otherwise multiple RT mode
is selected.

If single RT mode is selected the application must assign an RT address. This
can be done by hardware inputs (external RT address inputs to the board) or by
software. The hardware external RT address signals can be read using the
ADT_L1_1553_RT_GetExternalRTAddr function. The single RT address can be
set by software with the ADT_L1_1553_RT_SetSingleRTAddr function.

 /* Our RT will be RT Address 1 */
 printf("Setting Single RT Address . . . ");
 status = ADT_L1_1553_RT_SetSingleRTAddr(DEVID, 1);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

72

BROADCAST Messages – Single RT and Multiple RT
Broadcast (RT31) messages are handled differently for Single-RT mode and
Multiple-RT (default) mode. In Single-RT mode the Broadcast messages will go
to the same CDP buffer that would be used for non-broadcast messages. In
Multiple-RT mode you must setup RT31 with the desired subaddress buffers to
receive Broadcast messages when operating as an RT.
The example program ADT_L1_1553_ex_rt2_bcast_srt.c demonstrates this for
Single-RT mode.
The example program ADT_L1_1553_ex_rt2_bcast_mrt.c demonstrates this for
Multiple-RT mode.

Allocating and Managing RT/SA and Mode Code Buffers (CDPs)
If we want to do anything meaningful with the sub-address data then we need to
allocate dedicated (non-default) buffers for the sub-addresses of interest. This is
done using the ADT_L1_1553_RT_SA_CDPAllocate function.

Data is read and written to SA buffers using the
ADT_L1_1553_RT_SA_CDPRead and ADT_L1_1553_RT_SA_CDPWrite
functions. These functions read the entire message Common Data Packet
(CDP). There are also two functions to CDPReadWords/CDPWriteWords to
read/write individual word(s), but the user must be careful to know and access
proper word offsets of the CDP (these functions can save a lot of PCI access
time for reading/writing a small number of CDP words). Most applications should
just read the whole CDP and not worry about word offset locations (and you
would avoid possibly stepping on the CDP Head Pointer).

NOTE: If you read a CDP buffer while the firmware is in the middle of
processing a message for that buffer, then the CDP Status Word will be
0xFFFFFFFF. If you see this value, then you should read the buffer again
until the CDP Status Word is NOT 0xFFFFFFFF – you will then have a
complete CDP buffer. If you use interrupts to synchronize buffer reads to
messages on the bus then you should not see this case.

Most applications only use a single CDP buffer for a given SA. It is best to read
and write buffers synchronously with messages on the bus – the usual approach
is to enable an interrupt on each CDP, when the application gets the interrupt it
reads or writes the appropriate CDP buffer (see example program
ADT_L1_1553_ex_rt3int.c).

The Alta architecture allows multiple buffers per SA – these are configured as a
circular linked-list where the firmware will fill/send the current buffer then

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

73

automatically move to the next buffer. If an interrupt is used on each CDP then
the information passed to the interrupt handler will identify the CDP that
generated the interrupt and the hander can then read/write the appropriate CDP.
If your application does NOT use interrupts, then your code will have to
determine which buffer to read or write – for example, you could check the time-
stamps in each buffer to find the CDP that was filled/sent most recently, then
handle appropriately.

SA buffers can be freed using the ADT_L1_1553_RT_SA_CDPFree function.
This will reset the SA to use the default buffer.

Mode codes allocate buffers by the mode code number, so there is a different set
of functions for mode code buffers. Dedicated mode code buffers are allocated
using the ADT_L1_1553_RT_MC_CDPAllocate function.

Data is read and written to mode code buffers using the
ADT_L1_1553_RT_MC_CDPRead and ADT_L1_1553_RT_MC_CDPWrite
functions.

Mode code buffers can be freed using the ADT_L1_1553_RT_MC_CDPFree
function. This will reset the mode code to use the default buffer.

RT Command Legalization
Legal and illegal commands can be specified for sub-addresses and mode
codes, as per the 1553 protocol illegal command option.

Sub-address legalization settings can be read with the
ADT_L1_1553_RT_SA_LegalizationRead function and written with the
ADT_L1_1553_RT_SA_LegalizationWrite function.

Mode code legalization settings can be read with the
ADT_L1_1553_RT_MC_LegalizationRead function and written with the
ADT_L1_1553_RT_MC_LegalizationWrite function.

RT Status and Last Command Words
The RT status word can be read with the ADT_L1_1553_RT_StatusRead
function and written with the ADT_L1_1553_RT_StatusWrite function.

The last command word received by the RT can be read with the
ADT_L1_1553_RT_GetLastCmd function.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

74

RT Status Response Time
The RT status response time can be read with the
ADT_L1_1553_RT_GetRespTime function and written with the
ADT_L1_1553_RT_SetRespTime function.

Error Injection on the RT Status Word
Errors can be injected on the RT status word using the
ADT_L1_1553_RT_InjStsWordError function. The error settings for the status
word can be read using the ADT_L1_1553_RT_ReadStsWordError function.

Note that error injection on data words is defined at the CDP level and works the
same way for RT or BC data.

RT Control Functions
Remote terminal operation can be started and stopped with the functions
ADT_L1_1553_RT_Start and ADT_L1_1553_RT_Stop.

Specific remote terminals can be enabled with the ADT_L1_1553_RT_Enable
function or disabled with the ADT_L1_1553_RT_Disable function.

RT operation in response to specific mode codes (Dynamic Bus Control and
Transmit Vector Word) and enable/disable of transmission on specific busses (A
or B) can be done with the ADT_L1_1553_RT_SetOptions function.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

75

1553 Bus Controller (BC) Operation
The 1553 Bus Controller functions are defined in the file ADT_L1_1553_BC.c.
There are 15+ BC example programs in the distribution and you should use on
these to jump-start your application.

The Bus Controller (BC) defines 1553 messages using BC Control Blocks
(BCCB). The BCCB provides controls and transmission timing for BC Messages.
Each BCCB will have one or more CDPs to store transmit or received data of the
message. The following paragraphs and figure will detail BC setup and usage.

Figure BC-1: Basic BC Programming Flow

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

76

The following sample program provides a rudimentary setup and execution of a
BC message (derived from example “bc1.c”).

#include <stdio.h>
#include <memory.h>
#include "ADT_L1.h"

#define DEVID (ADT_PRODUCT_PMC1553 | ADT_DEVID_BOARDNUM_01 |
 ADT_DEVID_CHANNELTYPE_1553 |ADT_DEVID_CHANNELNUM_01)

int main()
{
 ADT_L0_UINT32 status, i;
 ADT_L1_1553_BC_CB myBCCB;
 ADT_L1_1553_CDP myCdp;

 status = ADT_L1_1553_InitDefault(DEVID, 10);
 status = ADT_L1_1553_BC_Init(DEVID, 10, 1, 0);
 status = ADT_L1_1553_BC_CB_CDPAllocate(DEVID, 0, 1);

 /* Define the BCCB for message 0 */
 memset(&myBCCB, 0, sizeof(myBCCB));
 myBCCB.CMD1Info = 0x0820;
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_BCRT |
 ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000;
 myBCCB.NextMsgNum = ADT_L1_1553_BC_NO_NEXT_MSG;
 status = ADT_L1_1553_BC_CB_Write(DEVID, 0, &myBCCB);

 /* Write the data buffer (CDP) for message 0 */
 memset(&myCdp, 0, sizeof(myCdp));
 for (i=0; i<32; i++)
 myCdp.DATAinfo[i] = 0x00001100 + i;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 0, 0, &myCdp);

 status = ADT_L1_1553_BC_Start(DEVID, 0);
 status = ADT_L1_msSleep(1);
 status = ADT_L1_1553_BC_Stop(DEVID);
 status = ADT_L1_CloseDevice(DEVID);
}

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

77

The API represents BC Control Blocks (BCCBs) with the structure
ADT_L1_1553_BC_CB. This structure is defined in the ADT_L1.h header file.

typedef struct adt_l1_1553_bc_cb {
 ADT_L0_UINT32 NextMsgNum; /*!< \brief Next message number */
 ADT_L0_UINT32 Retry; /*!< \brief BC Retry word */
 ADT_L0_UINT32 Csr; /*!< \brief BC CB CSR */
 ADT_L0_UINT32 CMD1Info; /*!< \brief Command word 1 info */
 ADT_L0_UINT32 CMD2Info; /*!< \brief Command word 2 info */
 ADT_L0_UINT32 FrameTime; /*!< \brief Frame time, 100ns LSB, applies if SOF */
 ADT_L0_UINT32 DelayTime; /*!< \brief Delay time, 100ns LSB, IM gap */
 ADT_L0_UINT32 BranchMsgNum; /*!< \brief Branch message number */
 ADT_L0_UINT32 StartFrame; /*!< \brief Start frame number */
 ADT_L0_UINT32 StopFrame; /*!< \brief Stop frame number */
 ADT_L0_UINT32 FrameRepRate; /*!< \brief Frame repitition rate */
 ADT_L0_UINT32 MsgNum; /*!< \brief Message number for this BCCB */
 ADT_L0_UINT32 NumBuffers; /*!< \brief Number of CDPs allocated to this BCCB */
} ADT_L1_1553_BC_CB;

/* 1553 BC Control Block Offsets (BYTE offsets) */
/* *** AltaCore-1553 Manual: Bus Controller (BC) *** */
#define ADT_L1_1553_BC_CB_NEXTPTR 0x0000
#define ADT_L1_1553_BC_CB_CDPPTR 0x0004
#define ADT_L1_1553_BC_CB_RETRY 0x0008
#define ADT_L1_1553_BC_CB_RETRY_ENABLEONERR 0x00000001
#define ADT_L1_1553_BC_CB_RETRY_ENABLEONBSY 0x00000002
#define ADT_L1_1553_BC_CB_RETRY_NUMATTEMPTD 0x000000F0
#define ADT_L1_1553_BC_CB_RETRY_CURPENUM 0x00000F00
#define ADT_L1_1553_BC_CB_RETRY_MAXNUMSET 0x0000F000
#define ADT_L1_1553_BC_CB_RETRY_BUSPATTERN 0xFFFF0000
#define ADT_L1_1553_BC_CB_CSR 0x000C
#define ADT_L1_1553_BC_CB_CSR_HALTONERROR 0x00000001
#define ADT_L1_1553_BC_CB_CSR_BUSA 0x00000002
#define ADT_L1_1553_BC_CB_CSR_BUSB 0x00000000
#define ADT_L1_1553_BC_CB_CSR_STARTFRAME 0x00000004
#define ADT_L1_1553_BC_CB_CSR_ENDFRAME 0x00000008
#define ADT_L1_1553_BC_CB_CSR_SCHEDTIMING 0x00000010
#define ADT_L1_1553_BC_CB_CSR_WAITFORTRG 0x00000020
#define ADT_L1_1553_BC_CB_CSR_GENEXTTRG 0x00000040
#define ADT_L1_1553_BC_CB_CSR_INTMSGCOMP 0x00000100
#define ADT_L1_1553_BC_CB_CSR_ADDRBRANCH 0x00100000
#define ADT_L1_1553_BC_CB_CSR_CDPBRANCHONLY 0x00200000
#define ADT_L1_1553_BC_CB_CSR_DELAYONLY 0x00400000
#define ADT_L1_1553_BC_CB_CSR_BRNCHONVALUE 0x00800000
#define ADT_L1_1553_BC_CB_CSR_BRNCHRETURN 0x01000000
#define ADT_L1_1553_BC_CB_CSR_TYPE_NOP 0x02000000
#define ADT_L1_1553_BC_CB_CSR_TYPE_BCRT 0x04000000
#define ADT_L1_1553_BC_CB_CSR_TYPE_RTBC 0x08000000
#define ADT_L1_1553_BC_CB_CSR_TYPE_RTRT 0x10000000
#define ADT_L1_1553_BC_CB_CSR_TYPE_MCDATA 0x20000000
#define ADT_L1_1553_BC_CB_CSR_TYPE_MCNODATA 0x40000000
#define ADT_L1_1553_BC_CB_CMD1INFO 0x0010
#define ADT_L1_1553_BC_CB_CMD2INFO 0x0014
#define ADT_L1_1553_CMD_WRDINFO_1553BITS 0x0000FFFF
#define ADT_L1_1553_CMD_WRDINFO_GAPTIME 0x00FF0000
#define ADT_L1_1553_CMD_WRDINFO_TXGAP 0x02000000
#define ADT_L1_1553_CMD_WRDINFO_TXPARERR 0x10000000
#define ADT_L1_1553_CMD_WRDINFO_TXMANERR 0x20000000
#define ADT_L1_1553_CMD_WRDINFO_TXSYNCERR 0x40000000
#define ADT_L1_1553_BC_CB_FRAMETIME 0x0018
#define ADT_L1_1553_BC_CB_DELAYTIME 0x001C
#define ADT_L1_1553_BC_CB_BRANCHADD 0x0020
#define ADT_L1_1553_BC_CB_STARTFRM 0x0024
#define ADT_L1_1553_BC_CB_STOPFRM 0x0028

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

78

#define ADT_L1_1553_BC_CB_REPRATE 0x002C
#define ADT_L1_1553_BC_CB_NXTXMIT 0x0030
#define ADT_L1_1553_BC_CB_APIMSGNUM 0x0034
#define ADT_L1_1553_BC_CB_APINUMCDP 0x0038
#define ADT_L1_1553_BC_CB_API1STCDP 0x003C

Figure BC-2: BCCB Data Structure

The fields in this structure correspond directly to the words in the BC Control
Block structure used by the 1553 Protocol Engine (PE) on the board (shown
above). This is discussed in detail in the AltaCore 1553 Protocol Engine
Specification/User’s Manual.

The API identifies messages by “message numbers” where the BC Control
Blocks used by the PE on the board use memory pointers. The API manages
the memory pointers by message number so the user application does not need
to deal with PE memory pointers.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

79

BC Initialization
The BC is initialized with the function ADT_L1_1553_BC_Init. The BC is closed
with the function ADT_L1_1553_BC_Close.

/* BC Initialization – max 100 messages, 1 minor per major, BC CSR 0 */
 printf("Initializing BC . . . ");
 status = ADT_L1_1553_BC_Init(DEVID, 100, 1, 0);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The second parameter to the ADT_L1_1553_BC_Init function is the maximum
number of BC messages that will be used. The API allocates a table in the
device memory that contains one 32-bit word for each possible message number
(in this example we have a maximum of 100 messages so we can have message
numbers 0 through 99). When a BC Control Block is allocated for a given
message number the API will store the memory pointer to the BC Control Block
in the table entry word for that message number. This is how the API relates
message numbers to BC Control Block pointers.

The third parameter is the number of minor frames per major frames. This will be
discussed in the section for BC Frame Operation.

The fourth parameter is the value to write to the PE Root BC CSR. The
ADT_L1.h header file defines constants for each of the bits/options in the CSR.
These are listed below:
ADT_L1_1553_BC_CSR_STOPONOFLOW Stop BC if there is a frame overflow.
ADT_L1_1553_BC_CSR_EN_SUBFRAMES Enable subframes (see BC Frame Opn).
ADT_L1_1553_BC_CSR_RTRYBUSY Enable retry on busy (see BC Retry Opn).
ADT_L1_1553_BC_CSR_RTRYERROR Enable retry on error (see BC Retry Opn).
ADT_L1_1553_BC_CSR_INTONFRMOFLOW Interrupt on frame overflow.
ADT_L1_1553_BC_CSR_INTONSTOP Interrupt on BC stop.

Refer to the AltaCore 1553 Protocol Engine Specification/User’s Manual for
details on the PE Root BC CSR.

Allocating BC Control Blocks (BCCB) and CDP Buffers
You must allocate BC Control Blocks and CDP buffers before you can read,
write, or otherwise do anything with the BC messages and buffers. This should
be done for all message numbers you plan to use because this allocation step
writes the BC Control Block memory pointers to the API BC CB table, thus
allowing the API to relate the message number to a BC Control Block in memory.
You cannot use a message number (for a NEXT or BRANCH message number)
until a BC Control Block has been allocated for it.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

80

BC Control Blocks and CDP buffers are allocated for a message number using
the ADT_L1_1553_BC_CB_CDPAllocate function. This memory can be freed
using the ADT_L1_1553_BC_CB_CDPFree function.

 /***** Allocate BCCB and CDP for each message we plan to use *****/
 for (i=0; i<10; i++) {
 /* Allocate BCCB and one CDPs for each message */
 printf("Allocating BCCB and one CDP for msg %d . . . ", i);
 status = ADT_L1_1553_BC_CB_CDPAllocate(DEVID, i, 1);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);
 }

The above example allocates a BCCB and one CDP buffer for 10 messages
(message numbers 0 through 9).

Reading and Writing BC Data (and reviewing message results)
There are two main functions to read/write CDP buffer data and control/status
information: ADT_L1_1553_BC_CB_CDPRead/Write. These functions read the
entire BCCB message content of the Common Data Packet (CDP). There are
also two functions to CDPReadWords/CDPWriteWords() to read/write individual
word(s), but the user must be careful to know and access proper word offsets of
the CDP.

Defining BC Messages (1553 Message Types)
1553 BC Messages are defined by the Bus Controller Control Block (BCCB) and
CDP as discussed in previous paragraphs. Here is the BCCB data structure
again:

memset(&myBCCB, 0, sizeof(myBCCB));
typedef struct adt_l1_1553_bc_cb {
 ADT_L0_UINT32 NextMsgNum; /*!< \brief Next message number */
 ADT_L0_UINT32 Retry; /*!< \brief BC Retry word */
 ADT_L0_UINT32 Csr; /*!< \brief BC CB CSR */
 ADT_L0_UINT32 CMD1Info; /*!< \brief Command word 1 info */
 ADT_L0_UINT32 CMD2Info; /*!< \brief Command word 2 info */
 ADT_L0_UINT32 FrameTime; /*!< \brief Frame time, 100ns LSB, applies if SOF */
 ADT_L0_UINT32 DelayTime; /*!< \brief Delay time, 100ns LSB, IM gap */
 ADT_L0_UINT32 BranchMsgNum; /*!< \brief Branch message number */
 ADT_L0_UINT32 StartFrame; /*!< \brief Start frame number */
 ADT_L0_UINT32 StopFrame; /*!< \brief Stop frame number */
 ADT_L0_UINT32 FrameRepRate; /*!< \brief Frame repitition rate */
 ADT_L0_UINT32 MsgNum; /*!< \brief Message number for this BCCB */
 ADT_L0_UINT32 NumBuffers; /*!< \brief Number of CDPs allocated to this BCCB */
} ADT_L1_1553_BC_CB;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

81

The user will set values in these BCCB words to format the BC message
transmission. The Command Words for the message are set in the CMD1 &
CMD2 (CMD2 for RT-RT second command word). The BCCB Control & Status
Register (CSR) is a key word that must be programmed with the message type
bit flag and other message options.

The other words in the BCCB do not need to be set for basic transfers, but must
be defined if more advanced BC options such as Framing, SubFraming,
Branching an Retries are selected.

The memset() C function is shown above as a reminder that it is a good idea to
zero out the BCCB before definition as most options must be defined with non-
zero (1’s) and initializing the field to zero will generally provide a good default
value.

The MsgNum field defines the message number (0-N) for this message. The
NextMsgNum field specifies the next message number in the list of BC
messages. These fields are used to link messages into lists of messages for
transmission.

The following paragraphs show examples to set BCCBs for different basic 1553
message types. They key difference between message types is setting the
correct BCCB CSR bit flag and setting the Command Word value(s). The Alta
design tries to abstract the various 1553 message structures so you only have to
define simple bit and word definitions and not worry about 1553 message
formats. The example program “bc3.c” show basic setup for all 1553 message
types:

BC-RT
Below is an example that defines a BCRT message (1-R-1-32) and writes data
words to the CDP buffer:
 /***** MESSAGE 0 - BCRT Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0820; /* BCRT 1-R-1-32 on Bus A */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_BCRT | ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 1; /* Go to message 1 */

 printf("Writing BCCB 0 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 0, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

82

 /* Write the data buffer (CDP) for message 0 */
 memset(&myCdp, 0, sizeof(myCdp));
 printf("Writing msg 0 buffer 0 . . . ");
 for (i=0; i<32; i++)
 myCdp.DATAinfo[i] = 0x00001100 + i;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 0, 0, &myCdp);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

RT-BC
Here is another example that defines a RTBC message (1-T-2-32):

 /***** MESSAGE 1 - RTBC Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0C40; /* BCRT 1-T-2-32 on Bus B */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_RTBC | ADT_L1_1553_BC_CB_CSR_BUSB;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 2; /* Go to message 2 */

 printf("Writing BCCB 1 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 1, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

RT-RT
The following example defines a RTRT message (2-R-3-16, 1-T-7-16):

 /***** MESSAGE 2 - RTRT Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x1060; /* RTRT 2-R-3-32 1-T-7-32 on Bus A */
 myBCCB.CMD2Info = 0x0CE0;
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_RTRT | ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 3; /* Go to message 3 */

 printf("Writing BCCB 2 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 2, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Mode Codes without Data
The next example defines a MODE CODE message without data (1-T-0-1
Synchronize without Data):

 /***** MESSAGE 3 - MODE WITHOUT DATA Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0C01; /* MODE 1-T-0-1 (Sync without data) on Bus B */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_MCNODATA | ADT_L1_1553_BC_CB_CSR_BUSB;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 4; /* Go to message 4 */

 printf("Writing BCCB 3 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 3, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

83

 else printf("FAILURE - Error = %d\n", status);

Mode Codes with Data
The next example defines a MODE CODE message with receive data (1-R-31-17
Synchronize with Data) and writes a data word to the CDP buffer:
 /***** MESSAGE 4 - MODE WITH RECEIVE DATA Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0BF1; /* MODE 1-R-31-17 (Sync with data) on Bus A */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_MCDATA | ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 5; /* Go to message 5 */

 printf("Writing BCCB 4 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 4, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

 /* Write the data buffer (CDP) for message 4 */
 memset(&myCdp, 0, sizeof(myCdp));
 printf("Writing msg 4 buffer 0 . . . ");
 myCdp.DATAinfo[0] = 0x0000ABCD;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 4, 0, &myCdp);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The next example defines a MODE CODE message with transmit data (1-T-0-18
Transmit Last Command):
 /***** MESSAGE 5 - MODE WITH TRANSMIT DATA Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0C12; /* MODE 1-T-0-18 (Transmit Last Command) on Bus A */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_MCDATA | ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 6; /* Go to message 6 */

 printf("Writing BCCB 5 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 5, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Broadcast BC-RT
The next example defines a BROADCAST BCRT message (31-R-5-32) and
writes data to the CDP buffer:

 /***** MESSAGE 6 - BROADCAST BCRT Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0xF8A0; /* BCRT 31-R-5-32 on Bus B */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_BCRT | ADT_L1_1553_BC_CB_CSR_BUSB;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 7; /* Go to message 7 */

 printf("Writing BCCB 6 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 6, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

84

 /* Write the data buffer (CDP) for message 6 */
 memset(&myCdp, 0, sizeof(myCdp));
 printf("Writing msg 6 buffer 0 . . . ");
 for (i=0; i<32; i++)
 myCdp.DATAinfo[i] = 0x0000FE00 + i;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 6, 0, &myCdp);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Broadcast RT-RT
The next example defines a BROADCAST RTRT message (31-R-6-16, 1-T-7-
16):

 /***** MESSAGE 7 - BROADCAST RTRT Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0xF8D0; /* BROADCAST RTRT 31-R-6-16 1-T-7-16 on Bus A */
 myBCCB.CMD2Info = 0x0CF0;
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_RTRT | ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 8; /* Go to message 8 */

 printf("Writing BCCB 7 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 7, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Broadcast Mode Codes without Data
The next example defines a BROADCAST MODE CODE message without data
(31-T-0-1 Synchronize without Data):

 /***** MESSAGE 8 - BROADCAST MODE WITHOUT DATA Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0xFC01; /* BRDCAST MODE 31-T-0-1 (Sync w/o data), Bus B */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_MCNODATA | ADT_L1_1553_BC_CB_CSR_BUSB;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = 9; /* Go to message 9 */

 printf("Writing BCCB 8 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 8, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Broadcast Mode Codes with Data
The final example defines a BROADCAST MODE CODE message with receive
data (31-R-0-17 Synchronize with Data) and writes a data word to the CDP
buffer:

 /***** MESSAGE 9 - BROADCAST MODE WITHOUT DATA Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0xF811; /* BRDCAST MODE 31-R-0-17 (Sync w/ data), Bus A */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_MCDATA | ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.NextMsgNum = ADT_L1_1553_BC_NO_NEXT_MSG; /* Stop BC after this message */

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

85

 printf("Writing BCCB 9 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 9, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

 /* Write the data buffer (CDP) for message 9 */
 memset(&myCdp, 0, sizeof(myCdp));
 printf("Writing msg 9 buffer 0 . . . ");
 myCdp.DATAinfo[0] = 0x0000BEEF;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 9, 0, &myCdp);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Note that the “NextMsgNum” field is set to ADT_L1_1553_BC_NO_NEXT_MSG.
This tells the BC to stop after this message is sent. Therefore when the BC is
started the BC will send this list of nine messages once and stop. If we wanted
the list to run continuously we would set the “NextMsgNum” field of the last
message to message number 0, thus pointing back to the first message.

Non Transmitting BC Message Types: NOPs, Delays & Branches
There are 4 message types that can be set in the BCCB Control Word for setting
a NOP (NOOP) condition, a Delay Only NOP condition and a Conditional
Branching decision message. These do not transmit 1553 messages. There are
defined for the BCCB Control Word as:
#define ADT_L1_1553_BC_CB_CSR_ADDRBRANCH 0x00100000
#define ADT_L1_1553_BC_CB_CSR_CDPBRANCHONLY 0x00200000
#define ADT_L1_1553_BC_CB_CSR_DELAYONLY 0x00400000
#define ADT_L1_1553_BC_CB_CSR_BRNCHONVALUE 0x00800000
#define ADT_L1_1553_BC_CB_CSR_BRNCHRETURN 0x01000000 // Set with transmitting BCCB
#define ADT_L1_1553_BC_CB_CSR_TYPE_NOP 0x02000000

BC Branching – Best Method
The user has several options for having the a simple logical AND mask &
compare logic to have the PE look at any CDP (or device address) location and
make a branch decision to another BCCB chain. The best method is to use the
ADDRBRANCH Bit where the user can call the
ADT_L1_1553_BC_SetAddressBranchValue function to setup BCCB and CDP
offsets and Data Value Mask Compare values for the PE to make branching
decisions during BCCB execution.

Several older PE methods include, the BRANCHRETURN is used for the
automated BRANCHONVALUE that can be set on each transmitting BCCB
message (where the PE can automatically setup a single IF condition on a word
of the BCCB’s active CDP). The CDPBRANCHONLY is a hybrid that allows
multiple IF-ELSE IF-ELSE IF style logic to be built for checking values in the last
active CDP.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

86

Branching is not allowed during subframing and there are other limitations, so
please read the AltaCore-1553 manual for details on this advanced operation.

NO Operation (NOP) and Delay Only BC Message Types
The TYPE_NOP and DELAYONLY Control Word flags allow hard No Operation
(NOP) setting and a soft NOP (DELAYONLY) that will still execute IMG, Frame
Schedule, Interrupt settings in the Control Word. These can be very useful for
having BCCB execution markers and place holders for on-demand messages
and allowing for Aperiodic insertion points during BC frame execution (see
discussion later in this section). Please see the AltaCore-1553 manual and
example programs for more detail and examples.

Disabling and Enabling BC Messages (NOP) & Delay Only Message Type
We can disable or enable BC messages in the list by setting or clearing the
ADT_L1_1553_BC_CB_CSR_TYPE_NOP or
ADT_L1_1553_BC_CB_CSR_TYPE_DELAYONLY flags in the BC CB CSR. If
one of these flags is set then the message is disabled. If this flag is not set then
the message is enabled. The NOP is just that – a hard NOP where no other
Control Word options are executed (including IMG or Frame Scheduling) and the
DELAYONLY option allows for programmed timing and other Control Word bit
flag options (see AltaCore-1553 manual for details).

Note on Inter-Message Gap time & Frame Message Scheduling
The “DelayTime” field defines the Inter-Message Gap (IMG) time or a Frame
Schedule Time (depending on the bit setting in the BCCB Control Word). For
IMG default setting, this is the delay from the end of the previous message to the
start of this message. The delay time has a LSB value of 100 nanoseconds and
is DEAD-BUS time (two microseconds will be added when measuring the gap
from mid-parity to mid-sync).

For “Frame Schedule Time”, which is only valid for Framed Messages (see later
paragraphs), this 100 nSec time is from the beginning of the frame and the
BCCB will execute when the time has expired. This can be VERY beneficial to
reduce jitter in message transmissions in frames. There are several example
programs that show both methods.

Starting and Stopping the BC & Synchronizing Stop
We can start the BC with the ADT_L1_1553_BC_Start function:

 /* Start BC */
 printf("Starting BC . . . ");
 status = ADT_L1_1553_BC_Start(DEVID, 0);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

87

This tells the API to start the BC at message number 0. Note that we could
specify a different initial message number in the second parameter.

The BC can be stopped using the ADT_L1_1553_BC_Stop function.

 /* Stop BC */
 printf("Stopping BC . . . ");
 status = ADT_L1_1553_BC_Stop(DEVID);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

We can check to see if the BC is currently running with the
ADT_L1_1553_BC_IsRunning function. This can be very useful to see if the BC
is still executing so you can synchronize future transmissions.

 /* Wait for BC to stop */
 isRunning = 1;
 while (isRunning) {
 status = ADT_L1_1553_BC_IsRunning(DEVID, &isRunning);
 }
 printf("BC stopped.\n");

BC Frame Operation
So far we have only discussed simple BC message lists that use the BC CB
“DelayTime” field to specify the inter-message gap time. The BC frame timer can
be used to implement more advanced message timing options.

The simplest usage of the frame timer is to send one or more messages in a
cyclic frame where the frame repeats at a constant rate regardless of the number
of messages, response or no response conditions, etc. For example, we could
define a frame of one or more messages that would be transmitted every 100
milliseconds. The first message in the frame would always start at a 10Hz
frequency (100 millisecond period) even if we added more message to a frame,
changed inter-message gap times on messages in the frame, etc.

If the STARTFRAME flag (ADT_L1_1553_BC_CB_CSR_STARTFRAME) is set
in the BC CB CSR for a message, the PE waits until the frame timer has expired
before sending the message. The PE then loads the value from the
“FrameTime” field of the BC CB into the frame timer as the new frame time.
Therefore you can have different frame times on a frame by frame basis if
desired.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

88

When using BC frame timing, you should use both STARTFRAME
(ADT_L1_1553_BC_CB_CSR_STARTFRAME) and ENDFRAME
(ADT_L1_1553_BC_CB_CSR_ENDFRAME) markers. The first message in the
frame should be the STARTFRAME and the last message in the frame should be
the ENDFRAME. The PE uses the ENDFRAME marker to increment the PE
frame counter and to mark when it is safe to send low-priority aperiodic
messages.

The following example sets up a single message in a 100 millisecond frame. We
mark this message as both STARTFRAME and ENDFRAME because it is the
only message in the frame.

 /* Define the BCCB for message 0 */
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0820; /* BCRT 1-R-1-32 on Bus A */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_BCRT |
 ADT_L1_1553_BC_CB_CSR_BUSA |
 ADT_L1_1553_BC_CB_CSR_STARTFRAME | /* Start of frame */
 ADT_L1_1553_BC_CB_CSR_ENDFRAME; /* End of frame */
 myBCCB.FrameTime = 1000000; /* 100 millisecond frame time (100ns LSB) */
 myBCCB.NextMsgNum = 0; /* Set NEXT msg number to point to this message */

 printf("Writing BCCB . . . ");

status = ADT_L1_1553_BC_CB_Write(DEVID, 0, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

 /* Write the data buffer (CDP) for message 0 */
 memset(&myCdp, 0, sizeof(myCdp));
 printf("Writing msg 0 buffer 0 . . . ");
 for (i=0; i<32; i++)
 myCdp.DATAinfo[i] = 0x00001100 + i;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 0, 0, &myCdp);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

This message will be transmitted once every 100 milliseconds (msec) using the
PE frame timer.

The PE frame counter is incremented every time the PE sees the ENDFRAME
marker. This counter can be read with the ADT_L1_1553_BC_GetFrameCount
function.

Note that you can have frames of varied length from one another. For example,
the first frame could be 100 msec and the second frame could be 200 msec as
you program the BCCB Frame Time with the STARTFRAME flag in the first
message of the frame. Most systems have common length frames, but you still

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

89

must set the correct, desired value in the BCCB Frame Time on the first
message of every frame.

Note on Inter-Message Gap time & Frame Message Scheduling
The “DelayTime” field defines the Inter-Message Gap (IMG) time or a Frame
Schedule Time (depending on the bit setting in the BCCB Control Word). For
IMG default setting, this is the delay from the end of the previous message to the
start of this message. The delay time has a LSB value of 100 nanoseconds and
is DEAD-BUS time (two microseconds will be added when measuring the gap
from mid-parity to mid-sync).

For “Frame Schedule Time”, which is only valid for Framed Messages, this 100
nSec time is from the beginning of the frame and the BCCB will execute when
the time has expired. This can be VERY beneficial to reduce jitter in message
transmissions in frames. There are several example programs that show both
methods.

Advanced BC Frame Operation
The BC frame capabilities allow us to define MAJOR and MINOR frames with
messages being sent at different repetition rates. For example, we may need to
send one message at 10Hz, another message at 5Hz, and yet another message
at 1Hz. In this case, we would use a 1Hz major frame that contains ten 10Hz
minor frames. When we initialize the BC we would specify 10 minor frames per
major frame and we would enable subframes.

 /* BC Initialization - max 100 messages 10 minors per major, enable subframes */
 printf("Initializing BC . . . ");
 status = ADT_L1_1553_BC_Init(DEVID, 100, 10, ADT_L1_1553_BC_CSR_EN_SUBFRAMES);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Now we will define three messages. We use the “StartFrame” and
“FrameRepRate” fields to specify which minor frame the message is first sent on
(start frame) and how often (in frames) the message will repeat (FrameRepRate).
The StopFrame also needs to be specified to signify the last frame to transmit in
(usually set to the last frame number).

 /***** MESSAGE 0 - MODE WITHOUT DATA Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0C01; /* MODE 1-T-0-1 (Sync without data) on Bus B */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_MCNODATA |
 ADT_L1_1553_BC_CB_CSR_BUSB |
 ADT_L1_1553_BC_CB_CSR_STARTFRAME; /* Start of frame */
 myBCCB.FrameTime = 1000000; /* 100 millisecond frame time (100ns LSB) */
 myBCCB.StartFrame = 1;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

90

 myBCCB.FrameRepRate = 1;
myBCCB.StopFrame = 10;

 myBCCB.NextMsgNum = 1; /* Go to message 1 */

 printf("Writing BCCB 0 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 0, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

 /***** MESSAGE 1 - BCRT Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x0820; /* BCRT 1-R-1-32 on Bus A */
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_BCRT |
 ADT_L1_1553_BC_CB_CSR_BUSA;
 myBCCB.DelayTime = 1000; /* 100 microsecond intermessage gap (100ns LSB) */
 myBCCB.StartFrame = 1;
 myBCCB.FrameRepRate = 2;

myBCCB.StopFrame = 10;
 myBCCB.NextMsgNum = 2; /* Go to message 2 */

 printf("Writing BCCB 1 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 1, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

 /* Write the data buffer (CDP) for message 1 */
 memset(&myCdp, 0, sizeof(myCdp));
 printf("Writing msg 1 buffer 1 . . . ");
 for (i=0; i<32; i++)
 myCdp.DATAinfo[i] = 0x00001100 + i;
 status = ADT_L1_1553_BC_CB_CDPWrite(DEVID, 1, 0, &myCdp);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

/***** MESSAGE 2 - RTRT Message *****/
 memset(&myBCCB, 0, sizeof(myBCCB));

 myBCCB.CMD1Info = 0x1060; /* RTRT 2-R-3-32 1-T-7-32 on Bus A */
 myBCCB.CMD2Info = 0x0CE0;
 myBCCB.Csr = ADT_L1_1553_BC_CB_CSR_TYPE_RTRT |
 ADT_L1_1553_BC_CB_CSR_BUSA |
 ADT_L1_1553_BC_CB_CSR_ENDFRAME; /* End of frame */
 myBCCB.DelayTime = 1000; /* 100.0 us inter-message gap (dead-bus time) */
 myBCCB.StartFrame = 1;
 myBCCB.FrameRepRate = 10;

myBCCB.StopFrame = 10;
 myBCCB.NextMsgNum = 0; /* Go to message 0 */

 printf("Writing BCCB 2 . . . ");
 status = ADT_L1_1553_BC_CB_Write(DEVID, 2, &myBCCB);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

Note that we have highlighted the settings for “StartFrame” and “FrameRepRate”.
All three messages have a “StartFrame” value of 1, which means that the
message will first be sent on the first frame. Message 0 has a “FrameRepRate”
of 1, which means that it will be sent on every frame – therefore this message will

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

91

be sent at a rate of 10Hz (100 millisecond period). Message 1 has a
“FrameRepRate” of 2, which means that it will be sent on every second frame –
therefore this message will be sent at a rate of 5Hz (200 millisecond period).
Message 2 has a “FrameRepRate” of 10, which means that it will be sent on
every tenth frame – therefore this message will be sent at a rate of 1 Hz (1
second period).

NOTE: Branching is not allowed with Subframing.

Aperiodic Messages
Aperiodic messages are messages that are not sent as part of the regular cycle
of BC messages in a frame. These messages are injected into the BC frame on
command. Aperiodic messages can be specified as low priority or high priority.
Low priority aperiodic messages are only sent after the last message in the frame
(as specified by the ENDFRAME bit in the BC CB CSR) and are only sent if there
is enough time remaining in the frame to send the message. High priority
messages are sent as soon as the currently executing message completes (thus
delaying any other messages in the frame).

Aperiodic messages can be injected into a running BC frame with the
ADT_L1_1553_BC_AperiodicSend function.

Note on BCCB Operation Logic for High Priority Aperiodic
Messages: As soon as a BCCB is done executing, the address of the
next BCCB is loaded in the processing logic . Before the next BCCB
address is loaded, the PE checks for a High Priority Aperiodic message,
but if one is not present, then the next BCCB address is loaded and the
appropriate (count-down) time (IMG, Frame Schedule or Frame Expire) is
loaded and cannot be interrupted. Many 1553 BC frames have large time
gaps (dead bus) at the end of the frame and naturally, aperiodic
messages would usually fall in the gap time. If you want to have a greater
chance of high priority aperiodic messages going in a frame with large
gaps, then you will want to insert 1 or 2 “DELAYONLY” messages at the
very end of the frame using the Frame Schedule option (within 20 uSec of
the end frame). This will provide entry slots for the high aperiodic
message to slip in for execution.

BEFORE SENDING ANY APERIODIC MESSAGE, the application should check
to see if the PE is currently processing aperiodic messages with the
ADT_L1_1553_BC_AperiodicIsRunning function. Again, there are example
programs to show how aperiodic messages work.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

92

Subframe and Branch logic is not allowed in Aperiodic chains.

BC Retry Operation
The BC can be configured to automatically retry messages if errors are detected
in the message or if the RT responds with the BUSY bit set in the status word.
Retries are enabled in the BC Control Block using the “retry” word. This word
uses the following format:

BC Retry Word
3 2 149 8 56710111213141516171819202122232425262728293031

Retry Count PE Retry # Attempts

0

Retry Pattern (1=Bus A, 0=Bus B) Bit 16 is first retry bit 1 0Rsvd

1 = Enable Retry on Busy
1 = Enable Retry on Error

Retry # Attempts

If bit 0 is set this enables retry on error conditions (no response, parity error,
etc.). If bit 1 is set this enables retry when the RT responds with the BUSY bit
set in the status word. Bits 4-7 are set by the PE to show the number of retries
that were attempted for the last retry instance. Bits 8-11 are used by the PE to
show the number of retries that were attempted. Bits 12-15 are set by the user to
select the maximum number of retries (0 to 15). Bits 16 to 31 are used to select
the retry bus pattern – the first retry corresponds to bit 16 and the fifteenth retry
corresponds to bit 30. If the bit is set then the retry message will be sent on Bus
A, otherwise it will be sent on Bus B.

For example, if we want to enable retries on errors or on a RT BUSY bit with a
maximum of 15 retries with the first retry on Bus B and alternating between
busses thereafter, we would program the retry word as follows:
 myBCCB.Retry = 0xAAAAF003;

There is an example program that shows how this can be setup for messages.

Error Injection on Command Words
Errors can be injected on command words using the
ADT_L1_1553_BC_InjCmdWordError function. The error settings for command
words can be read using the ADT_L1_1553_BC_ReadCmdWordError function.

Note that error injection on data words is defined at the CDP level and works the
same way for RT or BC data.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

93

1553 Playback Operation
The 1553 Playback functions are defined in the file ADT_L1_1553_PB.c.

Playback takes recorded BM messages (CDP records) and uses them to
regenerate the recorded messages on the 1553 bus. It can be configured to
playback RT status words or not on an RT by RT basis.

Note that playback is intended for “normal” messages without protocol errors – it
is difficult to accurately playback messages with errors. Abnormal conditions,
like broadcast RTBC messages for example (things like this occur in AS4111 RT
validation testing), may be discarded as invalid CDP records and the message
will be skipped by playback. Messages with errors or abnormal conditions
may play back inaccurately or may be skipped altogether.

Playback is initialized with the ADT_L1_1553_PB_Allocate function. This
function allocates the requested number of Playback Control Blocks (PCB) in
board memory. Each PCB corresponds to one message (one CDP record). The
PCBs are linked in a circular list. The Protocol Engine on the board will maintain
a “current” or “head” pointer to the active PCB. The API will maintain a “tail”
pointer to the next Playback Control Block to be written. The
ADT_L1_1553_PB_CDPWrite function discussed later uses these two pointers to
write new PCBs and to determine when the buffer is full.

 printf("Allocating PB buffers . . . ");
 status = ADT_L1_1553_PB_Allocate(DEVID, PB_BUFFER_SIZE);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The playback buffer size should be large enough that it will not empty faster than
your software can write new messages to it. This is determined by the expected
message rate and by how often the application can refresh the playback buffer.

Playback can be configured to playback RT status words or not on an RT by RT
basis. This is done with the ADT_L1_1553_PB_SetRtResponse function.

 printf("\nEnabling RT response for all RT addresses . . . ");
 status = ADT_L1_1553_PB_SetRtResponse(DEVID, 0xFFFFFFFF);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The example above enables playback of RT status words for all RT addresses.
The second parameter is a 32-bit word with one bit for each possible RT address
(0-31). If the bit is set then playback of the status word for that RT address is

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

94

enabled. If the bit is clear then playback of the status word and transmit data for
that RT address is disabled.

It is useful to disable playback of the RT status word and transmit data for a
specific RT address in cases where you need to test a specific RT device in a
recorded scenario. The RT under test is connected to the bus with the playback
device, which acts as the BC and all other RTs. By disabling playback of the RT
status word and transmit data for the RT address of the RT under test we allow
the UUT to respond to commands for that RT address.

BM CDP records are converted to Playback Control Blocks and written to board
memory by the ADT_L1_1553_PB_CDPWrite function. This function will return
ADT_SUCCESS or it will return ADT_ERR_BUFFER_FULL if there is no room in
the buffer.

 printf("Writing first CDP . . . ");
 status = ADT_L1_1553_PB_CDPWrite(DEVID, &myCdp, 0, 1);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

The above example demonstrates writing the FIRST CDP to the playback buffer.
The fourth parameter is the key here – a non-zero value tells the API that this is
the first CDP record and so the API will allow writing past the playback head
pointer. If this parameter is zero, this tells the API that this is NOT the first
message and if it sees that the tail pointer equals the head pointer then the buffer
is full and it will not accept the message. This “isFirstMsg” parameter allows us
to write to the playback buffer to fill it up initially before starting playback. Only
the first message should have this parameter set to a non-zero value – all
subsequent ADT_L1_1553_PB_CDPWrite calls should set this parameter to
zero.

 printf("Writing last CDP . . . ");
 status = ADT_L1_1553_PB_CDPWrite(DEVID, &myCdp, ADT_L1_1553_PBP_CONTROL_STOP, 0);
 if (status == ADT_SUCCESS) printf("Success.\n");
 else printf("FAILURE - Error = %d\n", status);

This example demonstrates writing the LAST CDP to the playback buffer. The
third parameter provides options for the PCB being written. The ADT_L1.h
header file defines constants for options that can be set in this parameter. These
options are:
 ADT_L1_1553_PBP_CONTROL_STOP Stop playback after this PCB
 ADT_L1_1553_PBP_CONTROL_LED Flash user LED on this PCB
 ADT_L1_1553_PBP_CONTROL_TRGOUT Generate TRG OUT on this PCB
 ADT_L1_1553_PBP_CONTROL_INT Generate interrupt on this PCB

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

95

 ADT_L1_1553_API_PB_CDPWRITE_ATON Directs Playback for Absolute Timing

We want playback to stop after completion of this PCB because this is the last
record to be played back, therefore we set the
ADT_L1_1553_PBP_CONTROL_STOP option.

Playback Relative verses Absolute (AT) Time Options
The ADT_L1_1553_API_PB_CDPWRITE_ATON option is required for playback
sessions that are using Absolute Timing (AT) on the PCBs. Without this option,
which is the default setting and used by AltaView, PCBs Time Stamps (64-bit, 20
nanosecond time stamp of the CDP) are transmitted to an offset of zero to the
first PCB (which means the AltaCore protocol engine resets its’ playback clock to
zero and uses the first time-stamp as a relative offset, subtraction, to all PCBs in
the session stream – so PCBs start transmitting immediately and then the first
CDP time stamp is subtracted to all other PCB time stamps to determine their
relative transmission time).

With the AT option, the playback clock does not reset and the absolute time
stamp of the CDP (copied to the PCB) is used to determine when the PCB is
transmitted. This requires the user to set the Playback clock to a known start
value using the ADT_L1_1553_PBSetTime function. There is also a Root PE
Playback CSR option for not starting the playback clock until a trigger is received
– and there is a Root PE Control Word option to force a trigger through software.
The AT method may be the preferred method of playback for multi channel/card
systems that want to synchronize clocks and playback streams to known system
time values.

For AT to be active, the user must also set the
ADT_L1_1553_PB_CSR_NOCLKRST and
ADT_L1_1553_PB_CSR_SKPPCBTMBKUP Root Playback Control Bits to not
have the clock reset and to decide if PCB times less than current time (time
back-ups) are transmitted or skipped. Time back-up PCBs will be immediately
transmitted on the wire if the skip option is not selected.

For large playback sessions (you could playback large BM CDP files with
thousands of messages) you will not have a “last” CDP in the playback buffer
when you first fill the buffer before starting playback. After you start playback you
will want to periodically write new CDP records to the playback buffer – you will
call the function ADT_L1_1553_PB_CDPWrite repeatedly until it returns
ADT_ERR_BUFFER_FULL. This allows you to maintain a continuous playback

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

96

of messages. Only when you reach the end of the CDP records to be played
back will you set the ADT_L1_1553_PBP_CONTROL_STOP flag.

You can release the resources used by playback with the
ADT_L1_1553_PB_Free function.

Playback Start/Stop Control Functions
Playback can be started and stopped with the functions ADT_L1_1553_PB_Start
and ADT_L1_1553_PB_Stop.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

97

1553 Signal Generator Operation
The 1553 Signal Generator functions are defined in the file ADT_L1_1553_SG.c.
There is an extensive example program provided to show how to setup BC and
RT type of signal generation messages. Also, please read the AltaCore 1553
Signal Generator manual section for details for this advanced feature.

The Signal Generator (SG) provides very precise control of the 1553 tranceiver
output. We first generate a stream of “vectors” where each vector is a two-bit
pattern – “10” is high, “01” is low, and “00” or “11” is ground. Each two-bit vector
represents 20 nanoseconds.

The Signal Generator is initialized with the ADT_L1_1553_SG_Configure
function.

 status = ADT_L1_1553_SG_Configure(DEVID);

The following demonstrates building vectors for a 1-R-1-32 command word and
32 data words:

 /* Command Word = 0x0820 (RT 1 RECEIVE SA 1 32 words) */
 status = ADT_L1_1553_SG_WordToVectors(0x80000820, vectors,

VECARRAYSIZE, &numVectors);

 /* 32 Data Words = 0xAB00 to 0xAB1F */
 for (i=0; i<32; i++)
 status = ADT_L1_1553_SG_WordToVectors(0x0000AB00 + i, vectors,

VECARRAYSIZE, &numVectors);

 /* We will send this on bus A */
 status = ADT_L1_1553_SG_CreateSGCB(DEVID, 'A', 0, 0, vectors, numVectors);

In this example, “vectors” is an array of ADT_L0_UINT32 with VECARRAYSIZE
entries. We use the function ADT_L1_1553_SG_WordToVectors to build vectors
for a standard 1553 word, including sync and parity. The first parameter contains
the 1553 word in bits 0-15 and bit 31 is the sync type (1 for command sync or 0
for data sync). We first generate vectors for the command word and then
generate vectors for 32 data words. All of these vectors are stored in the
“vectors” array. When we have all the vectors for the 1553 message, we use the
function ADT_L1_1553_SG_CreateSGCB to create a Signal Generator Control
Block (SG CB) in board memory. The second parameter to this function is a
character (‘A’ or ‘B’) that selects the bus to use. The third parameter is reserved
and should always be zero.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

98

If we create additional SG Control Blocks they are linked together in sequence as
they are created. The fourth parameter for the ADT_L1_1553_SG_CreateSGCB
function is the dead-bus gap time from the end of the previous SG CB. This time
value has a 100 nanosecond LSB.

The function ADT_L1_1553_SG_Free will free all memory used for SG Control
Blocks and reset the signal generator.

The API provides a function for vector-level control rather than 1553 word level
control. The function ADT_L1_1553_SG_AddVectors can be used to add
individual high, low, or ground vectors (where each vector represents 20
nanoseconds). This gives almost unlimited flexibility to define any vector pattern
desired.

SG Start/Stop Control Functions
The Signal Generator can be started and stopped with the functions
ADT_L1_1553_SG_Start and ADT_L1_1553_SG_Stop.

Signal Capture
Many Alta cards offer 8-bit A/D Signal Trigger and Capturing on the first channel
of 1553 cards (most cards except PMC-1553 and PC104P-1553 have signal
capture, but see your hardware manual for details). This is a powerful and
unique feature to only Alta standard cards – an industry first!

There are two simple functions to setup and read signal values:
status = ADT_L1_1553_SC_ArmTrigger(DEVID, scBus, scCsr, maskValue);
status = ADT_L1_1553_SC_ReadBuffer(DEVID, scBus, scBuffer1);

The SC_ReadBuffer() function is one of the few functions that uses the
ADT_L0_UINT8 data type – the above scBuffer1 is a:
 ADT_L0_UINT8 scBuffer1[2048]

Please see the L1 function references, the AltaCore 1553 manual and the
example program to see how to setup and use the trigger and reading of values.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

99

1553 Device Interrupts
Interrupts are events programmed in various 1553 data structures (usually a BC,
RT or BM CDPs) that can signal the user that a message or execution event has
occurred. To use interrupts the user really should know the low-level details on
how they work with the Alta 1553 device – please see the AltaCore-1553 manual
Interrupt Section.

There are also several sample programs that show how to use interrupts - this is
probably the best starting point (the “bc2int.c” shows examples of reading and
servicing most 1553 device interrupts, including RTs and BM). Essentially any
CDP (RT, BC or BM message) or major function can have an option flag bit set in
their Control Word to set and log an interrupt event.

Interrupt events from the Alta device can be managed two ways:

1. Hardware Interrupts – The device is enabled to generate a hardware
interrupt signal to the host computer when an interrupt event occurs on the
device. The operating system and/or device driver acknowledges the
interrupt and signals the API. The API calls the user’s interrupt handler
function.

2. Software Polled Interrupts – The application software periodically reads a
register to check an “interrupt pending” bit. If the bit is set then the
software calls the user’s interrupt handler function.

The software polling approach is simpler and more portable because it does not
require interaction with the operating system, but is more CPU-intensive because
the software must periodically read the board to check for the interrupt. If the
CPU cost is acceptable, this approach can provide faster interrupt latency than
the hardware interrupt approach because there is no context-switching required
to handle the interrupt.

The hardware interrupt approach is preferred when the software needs to
perform other tasks and cannot continually poll the board to check for interrupts.
This approach does require that the device driver and operating system are
properly configured to handle interrupts from the device.

The Interrupt Queue
Alta devices use an “interrupt queue” to store information on interrupt events in
the on-board memory for the device. The device can be configured to generate
interrupt events when a message has been received, when a buffer is full, etc. In
some cases, interrupt events can occur faster than the software can detect and
process them. The interrupt queue stores information on these events until the
software can handle them.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

100

The device initialization functions allow the user to specify the number of entries
to allocate for the interrupt queue. For example, the interrupt queue size is set
by the user by the ADT_L1_1553_InitDefault() functions. The interrupt queue
size is determined by the application’s requirements, but even if you do not
intend to use interrupt events in your application you must allocate an interrupt
queue with at least one entry. A good general practice is to allocate a minimum
queue depth of 10 entries. If the application requires more, then allocate a larger
queue depth.

The interrupt queue depth needed is determined by the rate at which the device
is expected to generate interrupts and by how quickly the software will be able to
detect and process interrupts. Real-time operating systems can provide very
fast, deterministic, and documented interrupt latencies. Operating systems like
Microsoft Windows can have widely varying interrupt latencies based on what the
system is doing and the programmer needs to plan for the worst-case latency
that the operating system will guarantee (assuming the operating system vendor
documents guaranteed interrupt latency).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

101

API – IQP Tail Pointer

Reserved

CDP Code Value (PE Only)

Sequence Number

Current IQP Pointer

First IQP Address

Root Interrupt Registers
BYTE offset

0x0238
0x0234

0x0210
0x020C

0x0208

0x0204

0x0200

1553 Interrupt Queue Data Structures

IQP Type & Sequence Number

ICP Head Pointer

Interrupt Queue Packet (IQP)

Reserved

Data Structure PTR

CDP Code Value (PE Only)
0x0214

Reserved

0x0000

0x0004

0x0008

0x000C

0x0010

BYTE offset

3 2 149 8 56710111213141516171819202122232425262728293031

Reserved

0

2931

1 = BM CDP Interrupt (CDP PTR)

IQP Type and Sequence Number Word

30

1 = RT CDP Interrupt (CDP PTR)
1 = BC CDP Interrupt (BCCB PTR)

Sequence Number28

1 = SG Interrupt (SGCB PTR)

To Data Structure That Caused Int

To Self or Next ICP

1 = BC STOP Interrupt (BCCB PTR)
1 = BC Retry Complete Interrupt (BCCB PTR)

1 = BC Frame Overflow Interrupt BCCB PTR)
1 = BC Message Complete Interrupt (BCCB BPTR)

27 26 25

1 = PB Interrupt (PCB PTR)

1617Rsv20

1 = BIT Fail Interrupt (BIT Status)

General Device Interrupt Functions
The API provides general interrupt functions in the file ADT_L1_INT.c.

The ADT_L1_INT_HandlerAttach function is used to assign a user interrupt
handler function for the device. This function calls the Layer 0
ADT_L0_AttachIntHandler function which configures the device driver and
operating system to handle interrupts from the device and to call the user
interrupt handler function when an interrupt occurs. This function includes an
optional “pUserData” parameter (void *). This pointer will be passed back to the
user interrupt handler function when the interrupt occurs and can be used to
provide context data. If not used just set this parameter to NULL.

The ADT_L1_INT_HandlerDetach function is used to detach the user interrupt
handler function for the device. This function calls the Layer 0
ADT_L0_DetachIntHandler function which configures the device driver and
operating system and removes the connection to the user interrupt handler
function.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

102

1553 Device Interrupt Functions
Interrupt functions specific to the MIL-STD-1553 protocol are provided in the file
ADT_L1_1553_INT.c. Refer to the 1553 example programs for examples
demonstrating the use of these functions (“bc2int.c“ shows example of handling
all interrupt types).

The functions ADT_L1_1553_INT_EnableInt and ADT_L1_1553_INT_DisableInt
enable or disable interrupts at the 1553 channel level.

The function ADT_L1_1553_INT_GenInt will cause the 1553 channel to generate
a test interrupt (but does not put anything in the interrupt queue). This function is
useful for testing interrupts when developing a device driver and Layer 0 API
module for a new system.

The function ADT_L1_1553_INT_CheckChannelIntPending is for applications
using the “software polling” method to detect interrupts. The application can call
this function periodically to determine if there are any new interrupt events for the
1553 channel.

The ADT_L1_1553_INT_IQ_ReadEntry and
ADT_L1_1553_INT_IQ_ReadNewEntries functions will return two values for
each interrupt queue entry. These are the interrupt type and interrupt info
words. These words are derived from the interrupt queue structures on the
board, which is shown in the diagram below.

The function ADT_L1_1553_INT_IQ_ReadNewEntries reads ALL new entries
from the interrupt queue into an array (THIS IS THE RECOMMENDED
METHOD). The function ADT_L1_1553_INT_IQ_ReadEntry will read one new
entry from the interrupt queue. This function can be called by the application’s
interrupt handler until all new entries in the interrupt queue have been processed.

The ADT_L1_1553_IntervalTimerGet and ADT_L1_1553_IntervalTimerSet
functions can be used to configure the 1553 device to generate an interrupt at
regular time intervals. This can be useful for applications that need to perform
actions at specific times that may or may not correspond to 1553 bus messages
or events. The example program ADT_L1_1553_ex_bm2int_tmr.c demonstrates
usage of the interval timer interrupt.

The interrupt type (intType) word tells us what kind of interrupt event occurred
and therefore tells us how to interpret the interrupt info word. This is the “IQP
Type and Sequence Number” word shown above.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

103

If the interrupt type is BM CDP, RT CDP, or BC CDP then the “Data Structure
PTR” in the firmware interrupt queue entry points to a CDP (Common Data
Packet). The CDP contains an “API Info Word” that identifies the message that
caused the interrupt

The interrupt info (intInfo) word returned when the interrupt queue entries are
read using the API functions will be this API Info word from the CDP structure.

RT Interrupt Info Word
For RT interrupts, this word contains fields for the RT Address,
Transmit/Receive, and Sub Address or Mode Code Value. Note that each of
these fields has one more bit than you might expect – we have 6 bits for RT

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

104

Address (only need 5 bits to represent 0-31), we have 2 bits for T/R (only need 1
bit to represent 0-1), and we have 6 bits for Sub Address (only need 5 bits for 0-
31). The reason we have an extra bit for these fields is so we can indicate when
multiple messages are using the same CDP buffer so the user knows that more
than one command word can cause this CDP buffer to generate an interrupt.

For example, once you have the RT Address, T/R bit, Sub Address/Mode Code
Value, and CDP Buffer Number you can use these as parameters to the
ADT_L1_1553_RT_SA_CDPRead or ADT_L1_1553_RT_MC_CDPRead (Mode
Codes) function to read the CDP buffer to see the complete message that
caused the interrupt. (There is also an API …CDPReadWords() functions that
allow the user to index directly to desired words in the CDP – this can save time
in only reading a data word of interest instead of the whole CDP to retrieve one
word).

When an RT is first created in memory it uses a single default buffer for all T/R
and SA & MCs so everything is “wrapped” until the user allocates specific buffers
for the desired sub addresses. If the CDP buffer is used by multiple sources then
the high bit in the RT, T/R, and Sub Address/Mode Code field is set in the API
info word to indicate this. MOST APPLICATIONS WILL NOT CARE AND CAN
DROP THE EXTRA BIT – use the lower 5 bits for RT Address, use the low bit for
T/R, and use the lower 5 bits for Sub Address.

BC Interrupts
For BCCB interrupts (Retry, Frame Overflow, Stop and BCCB Complete), the
API Info Word is simply the BCCB Message number which caused the interrupt.
For the BCCB CDP Interrupt, the API Info Word is described in the figure above,
and is a split word to provide the BCCB Message number and CDP buffer
number.

BCCB Complete verses BCCB CDP Interrupt
Many customers running BC applications with interrupts ask which of these two
interrupts is best for BC applications. In general, the BC CDP interrupt is the
most common because this would provide an interrupt when the individual BCCB
message is complete, AND the user would get the CDP index number in the
Interrupt Queue so they can query the message result.

The BCCB Complete interrupt is used to signify the BCCB transmission is
complete, but without regard to which CDP for that BCCB was completed. If
there is only one CDP for the BCCB, then setting either interrupt yields the same
result – the user was notified that this one message was sent and there is only
one CDP buffer. You should only need to use the BCCB Complete Interrupt if

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

105

you want to be signaled that the respective BCCB message completed and you
do not care about which CDP for the BCCB was executed.

BM CDP Interrupt Info Word
Monitor interrupts just provide the “CDP Message Number” (see figure for
Sequential Monitor CDP Info Word above), which is the CDP buffer number. Bus
Monitor Interrupts come from the user setting the interrupt option for the
respective Sequential Monitor CDP. Most interrupt driven BM applications will
allocated N CDPs for the BM and then set interrupt on the mid and last CDP of
the link list. This would allow “ping pong” buffers to be setup for monitoring. The
user can then use the ADT_L1_1553_BM_ReadNewMesgs() functions to retrieve
fresh messages.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

106

ARINC 429 Device Operation
This section will discuss the usage of Alta A429 devices. Refer to the ARINC
429 example programs for specific examples showing how the API is used with
these devices.

A429 Device Initialization Functions
Initialization functions specific to the ARINC 429 protocol are provided in the file
ADT_L1_A429_General.c.

Initialization functions specific to a bank of ARINC channels (device) are provided
in the file ADT_L1_A429_General.c. The L1 API provides the low-level steps to
allow customization of the initialization and word/label setup, but most customers
will use one of two functions:

• ADT_L1_A429_InitDefault
• ADT_L1_A429_InitDefault_ExtendedOptions

These functions combine low level setup (memory mapping) and bank/channel
steps for standard ARINC 429 Label definitions and bit/baud rates.

The ExtendedOptions functions allows the user to further specify if BIT Memory
Tests should be run (some applications prefer to have a fast start up without
memory BIT test) and if the device should have a bank level (not card) reset
(which is useful for application that stop/crash without proper shutdown).

The ADT_L1_API_DEVICEINIT_NOKP option can be used to bypass loading the
driver kernel plug-in but in most cases this option should NOT be set. This option
only applies to platforms that use the Jungo WinDriver software for the device
driver (Windows, Linux, Solaris).

These options are defined as follows:

#define ADT_L1_API_DEVICEINIT_FORCEINIT 0x00000001

Forces Initialization Regardless of Current API State. Often used from application
crashes or incorrect closing of application

#define ADT_L1_API_DEVICEINIT_NOMEMTEST 0x00000002
 Skips API Memory Test and Initialization (that can take several seconds).
#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004

Skips loading of the interrupt kernel plug-in. Not recommened for most applications.
#define ADT_L1_API_DEVICEINIT_ROOTPERESET 0x80000000

Forces a hard reset of the device channels. This clears all ARINC low level control
registers and halts any transmission and reception of data.

The ADT_L1_API_DEVICEINIT_NOKP option can be used to
bypass loading the driver kernel plug-in but in most cases this

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

107

option should NOT be set. This option only applies to platforms
that use the Jungo WinDriver software for the device driver
(Windows, Linux, Solaris). If this option is used then the application
cannot use hardware interrupts. The kernel plug-in is required for
hardware interrupts.

The ADT_L1_API_DEVICEINIT_FORCEINIT option should ONLY
be used in development and testing. This option is provided for
cases where the device may not have been closed properly and is
used to override the ADT_ERR_DEVICEINUSE error. This option
should NOT be used as the normal initialization method for your
application, because it bypasses protection against two applications
using the same device.

See the example programs provided to jump start the programming process.

The ADT_L1_A429_InitDefault and
ADT_L1_A429_InitDefault_ExtendedOptions functions can be used to simplify
initialization of an A429 device. These function calls the following functions:
 ADT_L1_InitDevice
 ADT_L1_A429_InitDevice

The ADT_L1_A429_InitDevice function initializes memory and allocates memory
for the interrupt queue for an A429 device.
 status = ADT_L1_A429_InitDevice(DEVID, 10);

This function call initializes the A429 device registers and allocates memory for
an interrupt queue with a depth of 10 entries. The interrupt queue depth is
determined by how often the user expects the device to generate interrupts and
how quickly the application will be able to service interrupts. This is discussed
further in the section on interrupt operation.

The caller provides the Device ID and the number of interrupt queue entries to
allocate and the ADT_L1_A429_InitDefault function will perform the initialization
and set the device configuration to the standard settings for the ARINC 429
protocol.

A429 Channel Configuration
The ADT_L1_A429_GetConfig function retrieves the TX-RX channel selection for
the device. This RX and TX configuration for the bank device of channels is
located at Root PE Offset from ADT_L1.h:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

108

#define ADT_L1_A429_PE_TXRX_CHANCONFIG 0x000C

Here is the Data Structure from the AltaCore ARINC manual:

Root PE Register 0x000C

Closing the ARINC Device
At the end of an ARINC (A429) application, or when the application no longer
needs to use the Alta device it can close the API as follows:

 ADT_L1_CloseDevice(DEVID);

This function frees resources, closes memory management, un-maps memory,
and detaches from the device. No API calls should be made for the device after
the ADT_L1_CloseDevice call has been made. The device must be initialized
again before use.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

109

A429 Receive (RX) Operation
The ARINC Receive (RX) functions are defined in the file ADT_L1_A429_RX.c.

The A429 device has three modes of receive operation – “Channel” and
“Multichannel” multi-buffer and Channel Label CVT. At the channel level you can
have a multi-buffer for labels received by the channel, and a single current value
table buffer (CVT) to read the latest label/word for the channel (for many
applications, only a CVT value is required and this can greatly simplify reading
the latest value for specific label/word of a channel).

You can also configure each receive channel to be included (or not) in the
multichannel receive buffer. The multichannel receive buffer allows you to see
labels from any or all receive channels in one buffer. All modes of operation
store received labels in “receive packets” (RXP). The API represents a receive
packet with the following structure.

/*! \brief A429 Receive Packet structure */
typedef struct adt_l1_a429_rxp {
 ADT_L0_UINT32 Control; /*!< \brief Control Word */
 ADT_L0_UINT32 TimeHigh; /*!< \brief Timestamp, upper 32-bits */
 ADT_L0_UINT32 TimeLow; /*!< \brief Timestamp, lower 32-bits */
 ADT_L0_UINT32 Data; /*!< \brief ARINC word */
} ADT_L1_A429_RXP;

The RXP control word contains three key items:

1. Bit 31 (mask 0x80000000) is the “decode error” flag. This bit will be set if
there was any error detected for the label (parity error, encoding error,
etc.)

2. Bits 24 to 27 (mask 0x0F000000) are a 4-bit field containing the RX
channel number (0-15, corresponding to channel number 1-16).

3. Bit 15 is set by the API to one for Multi-Channel RXPs only. This bit is set
to zero for normal channel RXPs.

The next two words are the 64-bit, 20ns LSB time stamp.

The Data word is the 32-bit A429 word/label (left justified if using less than 32
bits – the MSB will always be in bit position 31).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

110

Receive Channel Operation
Individual receive channels are initialized with the function
ADT_L1_A429_RX_Channel_Init. This function sets the bit-rate and allocates
the requested number of receive packets (RXPs). This function also determines
whether or not to include the channel in the multichannel (MC) receive (MCRX)
buffer AND selects if the Label CVT buffer should be allocated (as an options
parameter per below).
/* A429 API Init Option Values for ADT_L1_A429_RX_Channel_Init() */
#define ADT_L1_A429_API_RX_MCON 0x00000001
#define ADT_L1_A429_API_RX_LABELCVTON 0x00000002

The channel is started with the ADT_L1_A429_RX_Channel_Start function.

The ADT_L1_A429_RX_Channel_ReadNewRxPs function reads all new receive
packets (since the last time this function was called) from the channel. The user
must be careful to allocate enough RXPs to buffer between function calls. If only
one RXP is allocated (by the function ADT_L1_A429_RX_Channel_Init) for a
data table, then this function will always return the one RXP regardless if the
RXP is fresh or not.

There are also a read/write CVT functions to access the single-buffer RXP
location (if setup) for each label value (first 8 bits of the label/word – the label

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

111

index into the CVT is raw 8 bits, so the user will need to reverse the 8 bit value
from standard ARINC-429 label values, which are transmitted in reverse order to
the rest of the label).

The channel is stopped with the ADT_L1_A429_RX_Channel_Stop function.

The ADT_L1_A429_RX_Channel_Close function frees memory used by the
receive channel and closes it.

Two sets of “mask/compare” interrupt registers are provided to allow the user to
interrupt on two different conditions for each receive channel. The function
ADT_L1_A429_RX_Channel_SetMaskCompare writes these settings and the
function ADT_L1_A429_RX_Channel_GetMaskCompare reads these settings.

Multichannel Receive Operation
The multichannel receive buffer is initialized with the function
ADT_L1_A429_RXMC_BufferCreate. This function allocates the requested
number of receive packets (RXPs).

Start the individual receive channels with the ADT_L1_A429_RX_Channel_Start
function.

The ADT_L1_A429_RXMC_ReadNewRxPs function reads all new receive since
the last time this function was called) from the MCRX buffer. The user must be
careful to allocate enough RXPs to buffer between function calls. If only one
RXP is allocated for a data table, then this function will always return the one
RXP regardless if the RXP is fresh or not.

Stop the individual receive channels with the ADT_L1_A429_RX_Channel_Stop
function.

The ADT_L1_A429_RXMC_BufferFree function frees memory used by the
multichannel receive buffer.

The following basic API flow figure and example code provides a crude example
to initialize a ARINC device bank (of channels) and setup RX Channel 0 for
receiving labels. The user has three options for receiving labels in channel
buffers, but you must call the RX_Channel_Init() function and should allocate at
least 1 RXP at the Channel Level.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

112

Figure ARINC-RX-1: Basic Flow for Channel Level RX

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

113

#include <stdio.h>
#include "ADT_L1.h"

#define DEVID (ADT_PRODUCT_PMCA429 | ADT_DEVID_BOARDNUM_01 |
ADT_DEVID_CHANNELTYPE_A429 | ADT_DEVID_BANK_01)

int main()
{
 ADT_L0_UINT32 status, API_MC_CVT_Options, rxChan=0; label=0;
 ADT_L1_A429_RXP myRXP, chRXPs[50], mcRXPs[200];

status = ADT_L1_A429_InitDefault(DEVID, 10);

/* This is only setting needed to configure CVT – Optional RX Method */
API_MC_CVT_Options = ADT_L1_A429_API_RX_LABELCVTON;
/* Ths following channel init for RX Channel 0 with 100K baud, 100 RXP buffers for the
channel and turns on the CVT Table for the Channel.
*/
status = ADT_L1_A429_RX_Channel_Init(DEVID, rxChan, 100000, 100,
API_MC_CVT_Options); // Allocates 100 RXPs for Channel Buffer

/* Optional Multi Channel RX of all Channels */
status = ADT_L1_A429_RXMC_BufferCreate(DEVID, 80);

status = ADT_L1_A429_RX_Channel_Start(DEVID, 0);

/* The user needs to decide which read function to use */
/* User RX Application goes after one of the reads below */
status = ADT_L1_A429_RX_Channel_CVTReadRxP(DEVID,
 rxChan, label, &myRxp);
status = ADT_L1_A429_RX_Channel_ReadNewRxPs(DEVID,
 rxChan, 50, chRXPs);
status = ADT_L1_A429_RXMC_ReadNewRxPs(DEVID, 200, mcRXPs);

status = ADT_L1_A429_RX_Channel_Stop(DEVID, 0);
status = ADT_L1_A429_RX_Channel_Close(DEVID, 0);
status = ADT_L1_CloseDevice(DEVID);

}

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

114

Label LSB/MSB for ARINC-429 RXPs and TXPs
The “Data” word of the RXP or TXP is a raw 32-bit left justified word. ARINC-429
labels (the first 8 bits of the 32-bit word – Bits 0-7) are normally LSB first for bit 7,
which is reversed from the rest of the word. The user must reverse the label field
for transmission or reception as appropriate.

For example: a label of 0x02 would be need to flipped to 0x40. The following
code snippet would flip a label from an RXP (reverse the logic for TXP).
ADT_L0_UINT32 RXPlabel;
ADT_L1_A429_RXP myRXP_buffer;
/* Flip label MSB->LSB */
RXPlabel = myRXP_buffer.Data & 0x000000FF;
tempLabel |= (RXPlabel & 1) << 7;
tempLabel |= (RXPlabel & 2) << 5;
tempLabel |= (RXPlabel & 4) << 3;
tempLabel |= (RXPlabel & 8) << 1;
tempLabel |= (RXPlabel & 16) >> 1;
tempLabel |= (RXPlabel & 32) >> 3;
tempLabel |= (RXPlabel & 64) >> 5;
tempLabel |= (RXPlabel & 128) >> 7;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

115

A429 Transmit (TX) Operation
ARINC label/words can be transmitted by simple ARINC 429 label transmissions
controlled by the application and through more advanced periodic and aperiodic
structures to automate/repeat transmission schedules.

Prior to any transmission, the user will need to call the
ADT_L1_A429_TX_Channel_Init to setup bit rate and the number of TXCBs (set
at least one TXCB even if only using the simple one-shot method) – this function
setups the protocol engine for standard ARINC-429 bit encoding/decoding
parameters.

The API also provides ADT_L1_A429_TX_Channel_GetConfig and
ADT_L1_A429_TX_Channel_SetConfig to setup for non ARINC-429 style
transmissions (these calls are not necessary for standard ARINC-429
communications, which 90% of customers use). There are several example
programs that show various transmission options with standard 429, 717 and
other communication settings.

To use the simple, one-shot transmission method, the following function call after
ADT_L1_A429_TX_Channel_Init:

• The ADT_L1_A429_TX_Channel_SendLabel function is used to
send a single “one-shot” label.

• The ADT_L1_A429_TX_Channel_SendLabelBlock function is used
to send a block of labels.

For more advanced transmission control and for periodic setups, your application
will need to define Transmit Control Blocks (TXCB) and Transmit Packets
(TXPs).

The following paragraphs detail API calls when using TXCB transmission
options. Note that when using periodic transmission of labels you should
add the faster labels to the transmit list before slower labels – this allows
the firmware to process the faster labels first. If slower labels are in the list
before faster labels you can see more jitter in the faster labels.

The API represents the TXCB with the following structure:
/*! \brief A429 Transmit Control Block structure */
typedef struct adt_l1_a429_txcb {
 ADT_L0_UINT32 TxcbNum; /*!< \brief TXCB number */
 ADT_L0_UINT32 NextTxcbNum; /*!< \brief Next TXCB number */
 ADT_L0_UINT32 Control; /*!< \brief Control Word */
 ADT_L0_UINT32 TotalTxpCount; /*!< \brief Num TxP for the TXCB */
 ADT_L0_UINT32 CurrTxpIndex; /*!< \brief Index to current TxP */
 ADT_L0_UINT32 TxPeriod500us; /*!< \brief TX Period, 500us LSB */
} ADT_L1_A429_TXCB;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

116

All bits in the TXCB control word are reserved except for:
ADT_L1_A429_TXCB_CONTROL_STOPONTXBCOMP 0x00000010
 This bit can be set to stop transmission when this TXCB completes execution.

This can allow one-shot TXCB(s).

ADT_L1_A429_TXCB_CONTROL_INTONTXBCOMP 0x00000100

This bit can be set to register an interrupt event when the TXCB has finished transmitting.

The TxPeriod500us field sets the transmit period for the block (with a 500us
LSB). For example, if you want this TXCB to transmit every 100ms, set this
value to 200.

The API represents the TXP with the following structure:
/*! \brief A429 Transmit Packet structure */
typedef struct adt_l1_a429_txp {
 ADT_L0_UINT32 Control; /*!< \brief Control Word */
 ADT_L0_UINT32 Reserved; /*!< \brief Reserved Word */
 ADT_L0_UINT32 Delay; /*!< \brief Delay Word (100ns LSB) */
 ADT_L0_UINT32 Data; /*!< \brief ARINC word */
} ADT_L1_A429_TXP;

The TXP words are shown below:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

117

The API initializes the TXP Control Word to use odd parity (standard for A429).

The Pre-TX Delay field is used to set the minimum inter-label gap time (100ns
LSB). The A429 specification defines the minimum gap as four bit-times for the
selected bit-rate. For example, at a 100KHz bit-rate, each bit takes 10
microseconds so four bit-times would be 40 microseconds, or 400 with a 100ns
LSB.

Each transmit channel is initialized with the ADT_L1_A429_TX_Channel_Init
function. This function sets the bit rate and allocates the requested number of
transmit control blocks (TXCB) for the channel.

The ADT_L1_A429_TX_Channel_SendLabel function is used to send a single
“one-shot” label (if no periodic labels are defined) or to inject a single “aperiodic”
label (if periodic labels are defined using TXCBs and TXPs below).

The ADT_L1_A429_TX_Channel_SendLabelBlock function is used to send a
block of “one-shot” labels (if no periodic labels are defined) or to inject a block of
“aperiodic” labels (if periodic labels are defined using TXCBs and TXPs below).

The ADT_L1_A429_TX_Channel_CB_TXPAllocate function allocates the
requested number of transmit packets (TXP) for a specific TXCB. This function
should be done for ALL TXCBs planned for future use BEFORE any TXCB
definitions (or before any ADT_L1_A429_TX_Channel_CB_Write calls). When
this allocation call is made, the API build a TXCB table of pointers so that TXCB
message reference numbers can be indexed and referenced for later use.

The ADT_L1_A429_TX_Channel_CB_Read function is used to read a TXCB.
The ADT_L1_A429_TX_Channel_CB_Write function is used to write a TXCB.

The ADT_L1_A429_TX_Channel_CB_TXPRead function is used to read a TXP.
The ADT_L1_A429_TX_Channel_CB_TXPWrite function is used to write a TXP.

The ADT_L1_A429_TX_Channel_Start function starts a transmit channel.
The ADT_L1_A429_TX_Channel_Stop function stops a transmit channel.

The ADT_L1_A429_TX_Channel_IsRunning function can be used to determine if
a transmit channel is running.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

118

The ADT_L1_A429_TX_Channel_CB_TXPFree function frees memory for a
specific TXCB.

The function ADT_L1_A429_TX_Channel_Close frees memory for a transmit
channel and closes it.

The following basic API Flow figure and example programs show basic calls for
setting up an ARINC device bank, TX channel zero. The first program setups
one TXP label for transmitting at a 100 millisecond repeated period. A second
program follows that shows using the SendLabel() function. The SendLabel
function is much easier, but does not allow you to build lists and control the
transmission frequency with fine granularity (the SendLabel feature allows you to
send labels in between TXCB periods).

Several programs in the distribution provide more detailed and practical
examples.

Figure ARINC-TX-1: Basic TX Scheduling API Flow

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

119

/* Basic API Calls for TXCB-TXP Scheduling Setup */
#include <stdio.h>
#include <memory.h>
#include "ADT_L1.h"

#define DEVID (ADT_PRODUCT_PMCA429 | ADT_DEVID_BOARDNUM_01 |
 ADT_DEVID_CHANNELTYPE_A429 | ADT_DEVID_BANK_01)
int main()
{
 ADT_L0_UINT32 status, API_MC_CVT_Options, txChan=0;

status = ADT_L1_A429_InitDefault(DEVID, 10);

/* Inits TX Channel 0 to 100K Baud and 10 TXCBs */
status = ADT_L1_A429_TX_Channel_Init(DEVID, txChan, 100000, 10);
/* Allocates 1 TXP to TXCB (base offset 0) */
/* Remember to make ALL Allocate Calls Prior to Setup of TXCBs */
status = ADT_L1_A429_TX_Channel_CB_TXPAllocate(DEVID, txChan, 0, 1);

 /* Setup the TXCB Period and Other Options */
 memset(&myTXCB, 0, sizeof(myTXCB));
 myTXCB.NextTxcbNum = ADT_L1_A429_TXCB_NO_NEXT_TXCB;
 myTXCB.Control = 0;
 /* 100ms period (10Hz) 500us LSB=200 */
 myTXCB.TxPeriod500us = 200;
 status = ADT_L1_A429_TX_Channel_CB_Write(DEVID, txChan, 0, &myTXCB);

 /* Setup the TXP Value, Parity and Gap for transmission */
 myTXP.Control = ADT_L1_A429_TXP_CONTROL_PARITYON |
 ADT_L1_A429_TXP_CONTROL_PARITYODD;
 /* A429 gap of 4 bit-times, at 100KHz, this is 40us.
 At 100ns LSB, this is 400 */
 myTXP.Delay = 400;

myTXP.Data = 0x12345678; /* the LSB byte (0x8) is the RAW A429 Label */
status = ADT_L1_A429_TX_Channel_CB_TXPWrite(DEVID, txChan, 0, 0, &myTXP);

status = ADT_L1_A429_TX_Channel_Start(DEVID, txChan, 0);
/* Do User Application Here */
status = ADT_L1_A429_TX_Channel_Stop(DEVID, txChan);
status = ADT_L1_msSleep(100); // Let TX finish

status = ADT_L1_A429_TX_Channel_Close(DEVID, txChan);
status = ADT_L1_CloseDevice(DEVID);

}

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

120

/* Basic TX with SendLabel() Function */
#include <stdio.h>
#include <memory.h>
#include "ADT_L1.h"

#define DEVID (ADT_PRODUCT_PMCA429 | ADT_DEVID_BOARDNUM_01 |
ADT_DEVID_CHANNELTYPE_A429 | ADT_DEVID_BANK_01)
int main()
{
 ADT_L0_UINT32 status, txChan=0;

status = ADT_L1_A429_InitDefault(DEVID, 10);

/* Inits TX Channel 0 to 100K Baud and 10 TXCBs */
/* Ignore TXCBs for Send Label Only Applications */
status = ADT_L1_A429_TX_Channel_Init(DEVID, txChan, 100000, 10);

 status = ADT_L1_A429_TX_Channel_SendLabel(DEVID, txChan, 0x12345678);

status = ADT_L1_msSleep(1); // Let TX finish

status = ADT_L1_A429_TX_Channel_Close(DEVID, txChan);
status = ADT_L1_CloseDevice(DEVID);

}

Sending Aperiodic TXCB/TXP Label Lists
The user may want to send a label(s) list while periodic TXCBs are executing and
the SendLabel/Block() functions do not provide a low enough level of TXP
control. You can use a spare TXCB/TXP block to define execute an aperiodic list
(the SendLabel/Block() functions actually use this method, but hide all the low
level setup and control is handled for application). Aperiodic transmission of a
TXCB/TXP list can be done through the ADT_L1_A429_TX_Channel_AperiodicSend
and ADT_L1_A429_TX_Channel_AperiodicIsRunning functions. A list of TXPs in a
single TXCB can be posted during periodic TXCB execution for execution after
the current TXCB is being executed. Please see these function calls and the
example programs for simple setup methods.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

121

Label LSB/MSB for ARINC-429 RXPs and TXPs
The “Data” word of the RXP or TXP is a raw 32-bit left justified word. ARINC-429
labels (the first 8 bits of the 32-bit word – Bits 0-7) are normally LSB first for bit 7,
which is reversed from the rest of the word. The user must reverse the label field
for transmission or reception as appropriate.

For example: a label of 0x02 would be need to flipped to 0x40. The following
code snippet would flip a label from an RXP (reverse the logic for TXP).
ADT_L0_UINT32 RXPlabel;
ADT_L1_A429_RXP myRXP_buffer;
/* Flip label MSB->LSB */
RXPlabel = myRXP_buffer.Data & 0x000000FF;
tempLabel |= (RXPlabel & 1) << 7;
tempLabel |= (RXPlabel & 2) << 5;
tempLabel |= (RXPlabel & 4) << 3;
tempLabel |= (RXPlabel & 8) << 1;
tempLabel |= (RXPlabel & 16) >> 1;
tempLabel |= (RXPlabel & 32) >> 3;
tempLabel |= (RXPlabel & 64) >> 5;
tempLabel |= (RXPlabel & 128) >> 7;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

122

A429 Playback Operation
The A429 Playback functions are defined in the file ADT_L1_A429_PB.c.

Playback takes recorded RXPs and uses them to regenerate the recorded
messages on an A429 TX Channel. The respective TX channels word/label
definitions (specialized parity/word lengths, encoding – for example ARINC 717
word formats) must be setup by the application prior to starting playback (default
is standard ARINC-429 labels with a programmed bit rate).

Playback is initialized with the ADT_L1_A429_PB_Init and
ADT_L1_A429_PB_CB_PXPAllocate functions. The allocate function allocates
the requested number of Playback Control Blocks (PBCB) and Playback
Transmit Packets (PXPs) in board memory. Each PBCB can have 1-N PXPs
where a PXP corresponds to a RXP input. The PBCBs need to be in a circular
list. The Protocol Engine on the board will maintain a “current” or “head” pointer
to the active PCB. The API will maintain a “tail” pointer to the next Playback
Control Block to be written. The ADT_L1_A429_PB_RXPWrite function
discussed later uses these two pointers to write new (refresh) PBCBs/PXPs to
determine when the buffer is full.

ARINC Playback uses the same TX low level protocol engine structures for a
given TX channel. Root TX protocol engine data registers and the same
(playback does not use transmission periods as transmission is determined by
the RXP/PXP time stamp), and Transmit Control Blocks and Playback Control
Blocks data structures are essentially the same. So TXCBs and PBCB can be
used interchangeably.

/* Initialize TX channel 1 for playback with a bit-rate of 100KHz */
status = ADT_L1_A429_TX_Channel_PB_Init(DEVID, 0, 100000, PB_BUFFER_SIZE);
if (status != ADT_SUCCESS) printf("ERROR %d on ADT_L1_A429_TX_Channel_PB_Init\n", status);
else
{
 /* Allocate PBCB and one PXP for each message */
 for (i=0; i<PB_BUFFER_SIZE; i++)
 {
 status = ADT_L1_A429_TX_Channel_PB_CB_PXPAllocate(DEVID, 0, i, 1);
 }

 /* Link the PBCB messages in a circular list */
 for (i=0; i<PB_BUFFER_SIZE; i++)
 {
 status = ADT_L1_A429_TX_Channel_PB_CB_Read(DEVID, 0, i, &txcb);
 txcb.TxcbNum = i;
 if (i < (PB_BUFFER_SIZE - 1))
 txcb.NextTxcbNum = i+1;
 else
 txcb.NextTxcbNum = 0;
 status = ADT_L1_A429_TX_Channel_PB_CB_Write(DEVID, 0, i, &txcb);

}
}

 }

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

123

The number of PBCBs and PXP perPBCB should be large enough that they will
not empty faster than your software can write new messages to it. This is
determined by the expected message rate and by how often the application can
refresh the playback buffer.

RXPs records are converted to PXPs and written to board memory by the
ADT_L1_A429_PB_RXPWrite function. This function will return ADT_SUCCESS
or it will return ADT_ERR_BUFFER_FULL if there is no room in the buffer (there
are no empty PBCBs).

printf("Writing first RXP Block . . . ");
status = ADT_L1_A429_PB_RXPWrite(DEVID, txChan, numOfRXPs, &RXPbuffer, pbOptions, isFirst);
if (status == ADT_SUCCESS) printf("Success.\n");
else printf("FAILURE - Error = %d\n", status);

The above example demonstrates writing the FIRST PXP block to the playback
buffer (an empty PBCB). The user passes in the DEVID, the TX Channel
Number, the number of PXPs to be written to a PBCB buffer, the starting address
of the RXP buffer, and options variable for setting Stop and Absolute Timing
options (discussed in subsequent paragraphs, and a flag for designating if this
RXP write is the first of the playback session.

This “isFirst” parameter is the key here – a non-zero value tells the API that this
is the first RXP/PBCB in the session and allows the API to write past the
playback head pointer. If this parameter is zero, this tells the API that this is NOT
the first message and if it sees that the tail pointer equals the head pointer then
the buffer is full and it will not accept the message. This “isFirstMsg” parameter
allows us to write to the playback buffer to fill it up initially before starting
playback. Only the first message should have this parameter set to a non-zero
value – all subsequent ADT_L1_A429_PB_RXPWrite calls should set this
parameter to zero.

printf("Writing Last RXP Block . . . ");
pbOptions |= ADT_L1_A429_PBCB_CONTROL_STOPONPBCBCOMP;
status = ADT_L1_A429_PB_RXPWrite(DEVID, txChan, numOfRXPs, &RXPbuffer, pbOptions, isFirst);
if (status == ADT_SUCCESS) printf("Success.\n");
else printf("FAILURE - Error = %d\n", status);

This example demonstrates writing the LAST PBCB/RXP buffer to the playback
buffer. The pbOptions parameter provides options for the RXP block being
written.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

124

The ADT_L1.h header file defines constants for options that can be set in this
parameter. These options are:
ADT_L1_A429_PBCB_CONTROL_STOPONPBCBCOMP Stop playback after this PCB
ADT_L1_A429_PBCB_CONTROL_INTONPBCBCOMP Generate interrupt PBCB Complete
ADT_L1_A429_PB_API_ATON Directs Playback for Absolute Timing

We want playback to stop after completion of this PCB because this is the last
record to be played back, therefore we set the
ADT_L1_A429_PBCB_CONTROL_STOPONPBCBCOMP.

Playback Relative verses Absolute (AT) Time Options
The ADT_L1_A429_API _ATON option is required for playback sessions that are
using Absolute Timing (AT) for transmitting RXPs. Without this option, which is
the default setting and used by AltaView, RXPs Time Stamps (64-bit, 20 nSec
time stamp of the RXP) are transmitted to an offset of zero to the first RXP
(which means the AltaCore protocol engine resets its’ playback clock to zero and
uses the first time-stamp as a relative offset, subtraction, to all RXPs in the
session stream – so RXPs start transmitting immediately and then the first RXP
time stamp is subtracted to all other RXP time stamps to determine their relative
transmission time).

With the AT option, the playback clock does not reset and the absolute time
stamp of the RXP (copied to a PXP) is used to determine when the PXP is
transmitted. This requires the user to set the Playback clock to a known start
value using the ADT_L1_A429_PBSetTime function. The AT method may be the
preferred method of playback for multi channel/card systems that want to
synchronize clocks and playback streams to known system time values

For AT to be active, the user must also set the
ADT_L1_A429_PECSR_NOCLKRST and
ADT_L1_A429_PECSR_SKPPCBTMBKUP Root PE Control Bits to not have the
clock reset and to decide if PXP times less than current times (time back-ups)
are transmitted or skipped. Time back-up PXPs will be immediately transmitted
on the wire if the skip option is not selected.

For large playback sessions, you probably only need about 10 PBCBs with about
200 PXPs; The application will probably only need to refresh RXPs at a ½
second or less rate. Again, the number of PBCBs and PXPs is determined by
the playback RXP rates and your applications ability to periodically refresh new
RXP packets. After you start playback you will want to periodically write new
RXP blocks to the playback buffer – you will call the function
ADT_L1_A429_PB_RXPWrite repeatedly until it returns
ADT_ERR_BUFFER_FULL. This allows you to maintain a continuous playback

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

125

of messages. Only when you reach the end of the RXP records (end of playback
file) will you set the ADT_L1_A429_PBCB_CONTROL_INTONPBCBCOMP flag.

There are sample playback example programs that describe the above logic and
should greatly speed-up the code development.

You can release the resources used by playback with the
ADT_L1_A429_PB_Free function.

Playback Start/Stop Control Functions
Playback can be started and stopped with the functions ADT_L1_A429_PB_Start
and ADT_L1_A429_PB_Stop.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

126

A429 Signal Generator Operation
The A429 Signal Generator functions are defined in the file ADT_L1_A429_SG.c.

The Signal Generator (SG) provides very precise control of the A429 transmitter
output for one selected transmit channel. We first generate a stream of “vectors”
where each vector is a two-bit pattern – “10” is high, “01” is low, and “00” or “11”
is ground. Each two-bit vector represents 100 nanoseconds.

The Signal Generator is initialized with the ADT_L1_A429_SG_Configure
function. This selects TX Channel 1 (0 in second parameter) and high-speed
slew rate (1 in third parameter).

 status = ADT_L1_A429_SG_Configure(DEVID, 0, 1);

The following demonstrates building vectors for an A429 label word
(0x12345678):

/* Label word = 0x12345678, 100KHz bit rate (5us half bit time) */
status = ADT_L1_A429_SG_WordToVectors(0x12345678, 50, vectors,

2000, &numVectors);

In this example, “vectors” is an array of ADT_L0_UINT32 with VECARRAYSIZE
entries. We use the function ADT_L1_A429_SG_WordToVectors to build
vectors for a standard A429 word. All of these vectors are stored in the “vectors”
array.

The second parameter to this function is the half-bit-time with a 100ns LSB. In
this example, we want a bit-rate of 100KHz, which has a bit-time of 10us.
Therefore the half-bit-time is 5us, which is 50 with a 100ns LSB.

When we have all the vectors for the A429 word, we use the function
ADT_L1_A429_SG_CreateSGCB to create a Signal Generator Control Block
(SG CB) in board memory.

status = ADT_L1_A429_SG_CreateSGCB(DEVID, 0, 0, vectors, numVectors);

If we create additional SG Control Blocks they are linked together in sequence as
they are created.

The function ADT_L1_A429_SG_Free will free all memory used for SG Control
Blocks and reset the signal generator.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

127

The API provides a function for vector-level control rather than A429 word level
control. The function ADT_L1_A429_SG_AddVectors can be used to add
individual high, low, or ground vectors (where each vector represents 100
nanoseconds). This gives almost unlimited flexibility to define any vector pattern
desired.

SG Start/Stop Control Functions
The Signal Generator can be started and stopped with the functions
ADT_L1_A429_SG_Start and ADT_L1_A429_SG_Stop.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

128

A429 Device Interrupt Functions
Interrupt functions specific to the ARINC 429 protocol are provided in the file
ADT_L1_A429_INT.c. Refer to the A429 example programs for examples
demonstrating the use of these functions.

The functions ADT_L1_A429_INT_EnableInt and ADT_L1_A429_INT_DisableInt
enable or disable interrupts at the A429 device level.

The function ADT_L1_A429_INT_CheckDeviceIntPending is for applications
using the “software polling” method to detect interrupts. The application can call
this function periodically to determine if there are any new interrupt events for the
A429 device.

The function ADT_L1_A429_INT_IQ_ReadEntry will read one new entry from the
interrupt queue. This function can be called by the application’s interrupt handler
until all new entries in the interrupt queue have been processed.

The function ADT_L1_A429_INT_IQ_ReadNewEntries reads ALL new entries
from the interrupt queue into an array. This provides another method for the
application’s interrupt handler to read interrupt queue entries.

ADT_L1_A429_INT_IQ_ReadEntry and
ADT_L1_A429_INT_IQ_ReadNewEntries return two types of interrupt words
returned by these functions; interrupt type and interrupt info.

The interrupt type word tells us what kind of interrupt event occurred. This is
the “IQP Type and Sequence Number” word shown above.

The interrupt info word returned from these functions contains the following:
• For TXP/PXP Interrupt: the pInfo value will be a copy of the respective

TXP/PXP Reserved-API Info Word (2nd Word of the TXP/PXP).
• For RXP Interrupts: the pInfo value will be a copy of the respective RXP

Control Word (1st Word of the RXP). For Multi Channel (MC) RXPs, Bit 15
of the RXP Control Word is set to differentiate between MC and straight
channel RXP data tables.

• For TX/PB-CB Interrupt Complete: the pInfo value will be the respective
API – Message Number of the TX/PB-CB (Offset 0x002C).

• For TX/PB Stop Interrupt:
o For Aperiodic pInfo will be 0xFFFFFFFF if the TX Stop was from a

Aperiodic TXP (PB does not have aperiodics)
o For TX Stop from a TX-CB or PB-CB, then the pInfo value will be

the respective API TX/PB-CB number (Offset 0x002C).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

129

• All other interrupt types will return zero for pInfo

The pInfo values allow access to TXP, RXP and TX/PB-CB messages using
standard, non-pointer calls in the API.

Make sure to review the TXP and RXP data structures in the ARINC Quick
Reference or AltaCore-ARINC documents. This review will help in understanding
the information passed in the interrupt queue for parsing/processing entries.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

130

Other ARINC Setup & Usage (ARINC 717)
The Alta A429 product has universal encoder/decoder capability for baud rates
from 500 to 200K bits per second (baud symbols). The user can also define the
bit encoding/decoding and bits per word. Further, the first four RX and TX
channels can be set for 2 channels of 5V differential input/output for ARINC 717
and other interfaces (including single bit triggers).

Each RX and TX channel has two control registers (Setup1 & 2 for RX and CSR1
and CSR2 for TX) that set the universal encoding and decoding values for the
channel. Please see the AltaCore ARINC manual for details on these registers.
There are sample programs that show how to setup and use these channels for
ARINC 717 and for one-bit triggering. Once the encoder/decoder PE registers
are setup, then the user simply uses normal RX or TX setup and control data
structures for buffering and transmission control.

Here is a code snippet from example program “717rxtx1.c” for ARINC 717 setup.

/* Adjust RX Channel Setup for 717 Parameters */
/* This will force the PE to look for SF Sync "Lock" (4 word sync pattern found prior to saving
RXPs) */
status = ADT_L1_A429_RX_Channel_GetConfig(DEVID, RX_CH, &RXsetup1, &RXsetup2);
if (status != ADT_SUCCESS) printf("\nERROR %d on
ADT_L1_A429_RX_Channel_GetConfig\n", status);

/* Update RX Setup1 Reg with 717 Settings - bitRate should already be set */
RXsetup1 = (RXsetup1 & 0x03FF0000) | ((BitsPerWord << 26) |
(ADT_L1_A429_RXREG_SETUP1_MODEBITS_5V717<<6) |
ADT_L1_A429_RXREG_SETUP1_717SYNCON);
status = ADT_L1_A429_RX_Channel_SetConfig(DEVID, RX_CH, RXsetup1, RXsetup2);
if (status != ADT_SUCCESS) printf("\nERROR %d on ADT_L1_A429_RX_Channel_SetConfig\n",
status);

/* Setup RX CH 717 CSR Word & Sync Words*/
status = ADT_L1_A717_RX_Channel_SetConfig(DEVID, RX_CH, wordsPerSF, frameSyncs[0]
<< (32-BitsPerWord), frameSyncs[1] << (32-BitsPerWord),

frameSyncs[2] << (32-BitsPerWord), frameSyncs[3] << (32-BitsPerWord));
if (status != ADT_SUCCESS) printf("\nERROR %d on ADT_L1_A717_RX_Channel_SetConfig\n",
status);

/* TX CHANNEl SETUP */
/* Init TX Channel */
status = ADT_L1_A429_TX_Channel_Init(DEVID, TX_CH, bitRate, 1);
if (status != ADT_SUCCESS) printf("\nERROR %d on ADT_L1_A429_TX_Channel_Init %d\n",
status, TX_CH);

/* Adjust Root TX Channel CSRs for 717 Parameters */
status = ADT_L1_A429_TX_Channel_GetConfig(DEVID, TX_CH, &TXcsr1, &TXcsr2);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

131

if (status != ADT_SUCCESS) printf("\nERROR %d on ADT_L1_A429_TX_Channel_GetConfig\n",
status);

/* Update TX CSR2 Reg with 717 Settings - bitRate should already be set */
TXcsr2 = (TXcsr2 & 0x03FF0000) | ((BitsPerWord << 26) |
(ADT_L1_A429_RXREG_SETUP1_MODEBITS_5V717<<6));
status = ADT_L1_A429_TX_Channel_SetConfig(DEVID, TX_CH, TXcsr1, TXcsr2);
if (status != ADT_SUCCESS) printf("\nERROR %d on ADT_L1_A429_TX_Channel_SetConfig\n",
status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

132

Layer 1 API Files
The Layer 1 API consists of a top-level header file (ADT_L1.h) and a set of C
files that implement the Layer 1 functions.

The Layer 1 API module consists of the following files:
 ADT_L1.h – Top-level header file for Layer 1.
 ADT_L1_General.c – Layer 1 general functions.
 ADT_L1_MemMgmt.c – Layer 1 memory management functions.
 ADT_L1_BIT.c – Layer 1 built-in-test functions.
 ADT_L1_INT.c – Layer 1 interrupt functions.
 ADT_L1_BoardGlobal.c – Layer 1 board-level global device functions.

ADT_L1_1553_General.c – Layer 1 1553 general functions.
ADT_L1_1553_INT.c – Layer 1 1553 interrupt functions.

 ADT_L1_1553_RT.c – Layer 1 1553 remote terminal functions.
 ADT_L1_1553_BM.c – Layer 1 1553 bus monitor functions.
 ADT_L1_1553_BC.c – Layer 1 1553 bus controller functions.
 ADT_L1_1553_SG.c – Layer 1 1553 signal generator functions.
 ADT_L1_1553_PB.c – Layer 1 1553 playback functions.

ADT_L1_A429_General.c – Layer 1 A429 general functions.
ADT_L1_A429_INT.c – Layer 1 A429 interrupt functions.

 ADT_L1_A429_RX.c – Layer 1 A429 receive functions.
 ADT_L1_A429_RX_MC.c – Layer 1 A429 multichannel receive functions.
 ADT_L1_A429_TX.c – Layer 1 A429 transmit functions.
 ADT_L1_A429_SG.c – Layer 1 A429 signal generator functions.
 ADT_L1_A429_PB.c – Layer 1 A429 playback functions.

Layer 1 Example Programs
In the ADT_L1/Examples directory (windows installation), there are two folders
that provide numerous examples of 1553 (m1553) and ARINC (A429) Layer 1
programs. Most customers will start with one of these programs to start building
their application. The programs also apply to most other operating systems.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

133

Layer 1 API – Key Type Definitions

ADT_L1_1553_CDP
The structure ADT_L1_1553_CDP defines the “Common Data Packet” used for
1553 BC, RT, and BM data buffers.

/*! \brief BC/RT/BM CDP structure */
typedef struct adt_l1_1553_cdp {
 ADT_L0_UINT32 NextPtr; /*!< \brief CDP next pointer */
 ADT_L0_UINT32 BMCount; /*!< \brief BM message count */
 ADT_L0_UINT32 APIinfo; /*!< \brief Reserved for API */
 ADT_L0_UINT32 Rsvd1; /*!< \brief Reserved */
 ADT_L0_UINT32 Rsvd2; /*!< \brief Reserved */
 ADT_L0_UINT32 MaskValue; /*!< \brief Mask value */
 ADT_L0_UINT32 MaskCompare; /*!< \brief Mask compare value */
 ADT_L0_UINT32 CDPControlWord; /*!< \brief CDP control word */
 ADT_L0_UINT32 CDPStatusWord; /*!< \brief CDP status word */
 ADT_L0_UINT32 TimeHigh; /*!< \brief Timestamp, upper 32-bits */
 ADT_L0_UINT32 TimeLow; /*!< \brief Timestamp, lower 32-bits */
 ADT_L0_UINT32 IMGap; /*!< \brief Intermessage gap, 100ns LSB */
 ADT_L0_UINT32 Rsvd3; /*!< \brief Reserved */
 ADT_L0_UINT32 CMD1info; /*!< \brief Command 1 info */
 ADT_L0_UINT32 CMD2info; /*!< \brief Command 2 info */
 ADT_L0_UINT32 STS1info; /*!< \brief Status 1 info */
 ADT_L0_UINT32 STS2info; /*!< \brief Status 2 info */
 ADT_L0_UINT32 DATAinfo[32]; /*!< \brief Data word info */
} ADT_L1_1553_CDP;

ADT_L1_1553_BC_CB
The structure ADT_L1_1553_BC_CB defines the “BC Control Block” used to
define 1553 BC message blocks.

/*! \brief BC Control Block structure */
typedef struct adt_l1_1553_bc_cb {
 ADT_L0_UINT32 NextMsgNum; /*!< \brief Next message number */
 ADT_L0_UINT32 Retry; /*!< \brief BC Retry word */
 ADT_L0_UINT32 Csr; /*!< \brief BC CB CSR */
 ADT_L0_UINT32 CMD1Info; /*!< \brief Command word 1 info */
 ADT_L0_UINT32 CMD2Info; /*!< \brief Command word 2 info */
 ADT_L0_UINT32 FrameTime; /*!< \brief Frame time, 100ns LSB, applies if start of frame */
 ADT_L0_UINT32 DelayTime; /*!< \brief Delay time, 100ns LSB, IM gap or delay from SOF */
 ADT_L0_UINT32 BranchMsgNum; /*!< \brief Branch message number */
 ADT_L0_UINT32 StartFrame; /*!< \brief Start frame number */
 ADT_L0_UINT32 StopFrame; /*!< \brief Stop frame number */
 ADT_L0_UINT32 FrameRepRate; /*!< \brief Frame repitition rate */
 ADT_L0_UINT32 MsgNum; /*!< \brief Message number for this BCCB */
 ADT_L0_UINT32 NumBuffers; /*!< \brief Number of CDPs allocated to this BCCB */
} ADT_L1_1553_BC_CB;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

134

ADT_L1_A429_RXP
The structure ADT_L1_A429_RXP defines the “Receive Packet” used to store
labels (and raw data) received on ARINC 429 receive channels. This is also
used to read an RXP archive file for Playback operations.

/*! \brief A429 Receive Packet structure */
typedef struct adt_l1_a429_rxp {
 ADT_L0_UINT32 Control; /*!< \brief Control Word */
 ADT_L0_UINT32 TimeHigh; /*!< \brief Timestamp, upper 32-bits */
 ADT_L0_UINT32 TimeLow; /*!< \brief Timestamp, lower 32-bits */
 ADT_L0_UINT32 Data; /*!< \brief ARINC word */
} ADT_L1_A429_RXP;

ADT_L1_A429_TXP
The structure ADT_L1_A429_TXP defines the “Transmit Packet” used to store
labels (and raw data) to be transmitted on ARINC 429 transmit (including
playback) channels.

/*! \brief A429 Transmit Packet structure */
typedef struct adt_l1_a429_txp {
 ADT_L0_UINT32 Control; /*!< \brief Control Word */
 ADT_L0_UINT32 Reserved; /*!< \brief Reserved Word */
 ADT_L0_UINT32 Delay; /*!< \brief Delay Word (100ns LSB) */
 ADT_L0_UINT32 Data; /*!< \brief ARINC word */
} ADT_L1_A429_TXP;

Label LSB/MSB for ARINC-429 RXPs and TXPs
The “Data” word of the RXP or TXP is a raw 32-bit left justified word. ARINC-429
labels (the first 8 bits of the 32-bit word – Bits 0-7) are normally LSB first for bit 7,
which is reversed from the rest of the word. The user must reverse the label field
for transmission or reception as appropriate.

For example: a label of 0x02 would be need to flipped to 0x40. The following
code snippet would flip a label from an RXP (reverse the logic for TXP).
ADT_L0_UINT32 RXPlabel;
ADT_L1_A429_RXP myRXP_buffer;
/* Flip label MSB->LSB */
RXPlabel = myRXP_buffer.Data & 0x000000FF;
tempLabel |= (RXPlabel & 1) << 7;
tempLabel |= (RXPlabel & 2) << 5;
tempLabel |= (RXPlabel & 4) << 3;
tempLabel |= (RXPlabel & 8) << 1;
tempLabel |= (RXPlabel & 16) >> 1;
tempLabel |= (RXPlabel & 32) >> 3;
tempLabel |= (RXPlabel & 64) >> 5;
tempLabel |= (RXPlabel & 128) >> 7;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

135

ADT_L1_A429_TXCB
The structure ADT_L1_A429_TXCB defines the “Transmit Control Block” (TXCB)
used to control transmissions on ARINC 429 transmit channels. This is also
used for Playback Control Blocks (PBCB)

/*! \brief A429 Transmit Control Block structure */
typedef struct adt_l1_a429_txcb {
 ADT_L0_UINT32 TxcbNum; /*!< \brief TXCB number */
 ADT_L0_UINT32 NextTxcbNum; /*!< \brief Next TXCB number */
 ADT_L0_UINT32 Control; /*!< \brief Control Word */
 ADT_L0_UINT32 TotalTxpCount; /*!< \brief Number of TxP for this block */
 ADT_L0_UINT32 CurrTxpIndex; /*!< \brief Index to current TxP */
 ADT_L0_UINT32 TxPeriod500us; /*!< \brief TX Period, 500us LSB */
} ADT_L1_A429_TXCB;

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

136

Layer 1 API Constants

Error Code Constants
The Layer 1 API reserves the error code range 1000 to 1999. These constants
define integer (32-bit) values that will be returned by the API functions to indicate
either SUCCESS or an error code indicating why the function failed.

/********* Layer 1 Error Codes (1000 to 1999) *********/
#define ADT_ERR_BAD_INPUT 1000 /*!< \brief Bad input parameters. */
#define ADT_ERR_MEM_TEST_FAIL 1001 /*!< \brief Failed memory test. */
#define ADT_ERR_MEM_MGT_NO_INIT 1002 /*!< \brief Memory Management not initialized for the device ID */
#define ADT_ERR_MEM_MGT_INIT 1003 /*!< \brief Memory Management already initialized for device ID */
#define ADT_ERR_MEM_MGT_NO_MEM 1004 /*!< \brief Not enough memory available */
#define ADT_ERR_BAD_DEV_TYPE 1005 /*!< \brief Bad device type in device ID */
#define ADT_ERR_RT_FT_UNDEF 1006 /*!< \brief RT Filter Table not defined */
#define ADT_ERR_RT_SA_UNDEF 1007 /*!< \brief RT Subaddress not defined */
#define ADT_ERR_RT_SA_CDP_UNDEF 1008 /*!< \brief RT SA CDP not defined */
#define ADT_ERR_IQ_NO_NEW_ENTRY 1009 /*!< \brief No new entry in interrupt queue */
#define ADT_ERR_NO_BCCB_TABLE 1010 /*!< \brief BCCB Table Pointer is zero */
#define ADT_ERR_BCCB_ALREADY_ALLOCATED 1011 /*!< \brief BCCB already allocated */
#define ADT_ERR_BCCB_NOT_ALLOCATED 1012 /*!< \brief BCCB has not been allocated */
#define ADT_ERR_BUFFER_FULL 1013 /*!< \brief 1553-ARINC PB (CDP/PCB or RXP/PXP) buf full */
#define ADT_ERR_TIMEOUT 1014 /*!< \brief Timeout error. */
#define ADT_ERR_BAD_CHAN_NUM 1015 /*!< \brief Bad channel number or channel does not exist */
#define ADT_ERR_BITFAIL 1016 /*!< \brief Built-In Test failure */
#define ADT_ERR_DEVICEINUSE 1017 /*!< \brief Device in use already */
#define ADT_ERR_NO_TXCB_TABLE 1018 /*!< \brief TXCB Table Pointer is zero */
#define ADT_ERR_TXCB_ALREADY_ALLOCATED 1019 /*!< \brief TXCB already allocated */
#define ADT_ERR_TXCB_NOT_ALLOCATED 1020 /*!< \brief TXCB has not been allocated */
#define ADT_ERR_PBCB_TOOMANYPXPS 1021 /*!< \brief PBCB Too Many PXPs For PCBC Allocation */
#define ADT_ERR_NORXCHCVT_ALLOCATED 1022 /*!< \brief RX CH - No CVT Option Defined at Init */
#define ADT_ERR_NO_DATA_AVAILABLE 1023 /*!< \brief No Data Available */

Many more constants are defined in the ADT_L1.h header file – most of these
are used internally by the API and they will not be described in detail here.

The function ADT_L1_Error_to_String can be used to convert an error/status
code to a string.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

137

Layer 1 API Functions
Each of the Layer 1 API functions is described below.

General Functions
This section describes the Layer 1 API General functions. These functions are
defined in the file ADT_L1_General.c.

ADT_L1_DevicePresent
ADT_L0_UINT32 ADT_L1_DevicePresent (ADT_L0_UINT32 devID,

ADT_L0_UINT32 *config,
ADT_L0_UINT32 *serNum)

This function determines if a given device is present in the system. If the device is
present it reads the configuration register and serial number for the board. This
function can be used to scan for Alta devices installed in the system and can be
called without first initializing a device.

This function should NOT be called on devices/channels that are already initialized
and operational, because when the DevicePresent function finishes it unmaps
memory (and closes the socket for ENET devices).

A recommended way to use this function is to always look for the GLOBAL device on
the desired board type (rather than a 1553 channel device or A429 bank device).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
config – pointer to store the value of the configuration register.
serNum – pointer to store the serial number.

Returns:

ADT_SUCCESS - Device is present
ADT_FAILURE - Device is NOT present

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

138

ADT_L1_DevicePresent_pciInfo
ADT_L0_UINT32 ADT_L1_DevicePresent_pciInfo (ADT_L0_UINT32 devID,

ADT_L0_UINT32 *config,
ADT_L0_UINT32 *serNum,
ADT_L0_UINT32 *pciBus,
ADT_L0_UINT32 *pciDevice,
ADT_L0_UINT32 *pciFunc)

This function determines if a given device is present in the system and returns PCI
information – bus/device/function. If the device is present it reads the configuration
register and serial number for the board. This function can be used to scan for Alta
devices installed in the system and can be called without first initializing a device.

This function should NOT be called on devices/channels that are already initialized
and operational, because when the DevicePresent function finishes it unmaps
memory (and closes the socket for ENET devices).

A recommended way to use this function is to always look for the GLOBAL device on
the desired board type (rather than a 1553 channel device or A429 bank device).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
config – pointer to store the value of the configuration register.
serNum – pointer to store the serial number.
pciBus – pointer to store the PCI bus number.
pciDevice – pointer to store the PCI device number.
pciFunc – pointer to store the PCI function number.

Returns:

ADT_SUCCESS - Device is present
ADT_FAILURE - Device is NOT present

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

139

ADT_L1_InitDevice
ADT_L0_UINT32 ADT_L1_InitDevice (ADT_L0_UINT32 devID,

ADT_L0_UINT32 startupOptions)

This function initializes a device - maps memory and initializes memory
management.

Additional startup options are provided to allow the user to specify to force API
initialization (overrides check for device in use, needed for previous soft application
crashes), skip Memory Test (for fast startups), and perform a hard reset on the
device (a 1553 channel or A429 device bank of channels – this does not reset the
entire card – only the device). The ADT_L1_API_DEVICEINIT_NOKP option can be
used to bypass loading the driver kernel plug-in but in most cases this option should
NOT be set.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
startupOptions are user selected startup options defined as follows:

#define ADT_L1_API_DEVICEINIT_FORCEINIT 0x00000001
#define ADT_L1_API_DEVICEINIT_NOMEMTEST 0x00000002
#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004
#define ADT_L1_API_DEVICEINIT_ROOTPERESET 0x80000000

The ADT_L1_API_DEVICEINIT_NOKP option can be used to
bypass loading the driver kernel plug-in but in most cases this
option should NOT be set. This option only applies to platforms
that use the Jungo WinDriver software for the device driver
(Windows, Linux, Solaris). If this option is used then the application
cannot use hardware interrupts. The kernel plug-in is required
for hardware interrupts.

The ADT_L1_API_DEVICEINIT_FORCEINIT option should ONLY
be used in development and testing. This option is provided for
cases where the device may not have been closed properly and is
used to override the ADT_ERR_DEVICEINUSE error. This option
should NOT be used as the normal initialization method for your
application, because it bypasses protection against two applications
using the same device.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_CHAN_NUM - Bad channel number or channel does not exist
ADT_ERR_BITFAIL - Failed Built-In Test

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

140

ADT_ERR_DEVICEINUSE - Device in use (see explanation in the Layer 1 API
Operational Discussion under “Initializing and Closing the API”)

ADT_FAILURE - Completed with error

ADT_L1_CloseDevice
ADT_L0_UINT32 ADT_L1_CloseDevice (ADT_L0_UINT32 devID)

This function un-maps memory and closes the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - ADT_L0_UnmapMemory failed

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

141

ADT_L1_GetBoardInfo
ADT_L0_UINT32 ADT_L1_GetBoardInfo (ADT_L0_UINT32 devID,

ADT_L0_UINT32 * prodIDandRev,
ADT_L0_UINT32 * capabilitiesReg,
 ADT_L0_UINT32 * serialNumber,
ADT_L0_UINT32 * alignCheck,
ADT_L0_UINT32 * memorySize)

This function gets the BOARD-LEVEL information from the global registers on the
board. These are described in detail in the AltaCore 1553 Protocol Engine
Specification/User’s Manual.
Product ID and Revision - Product ID in upper 16-bits, revision in lower 16-bits. This
is represented as two Hex values, for example product ID 6000, rev 0502.
Capabilities Register - See AltaCore 1553 Protocol Engine Specification/User’s
Manual.
Serial Number - This is the board serial number. The normal representation of this
displays the upper 16-bits in Hex (date code) and the lower 16-bits in decimal (serial
number). For example, 0903-00123.
Align Check Word - This should always be 0x12345678. This value can be read to
check for problems with byte or word swapping when porting to a new OS or
platform.
Memory Size - This provides the total memory size for the board in kilobytes.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
prodIDandRev is a pointer to store the product ID and Revision.
capabilitiesReg is a pointer to store the capabilities register.
serialNumber is a pointer to store the serial number.
alignCheck is a pointer to store the align check word.
memorySize is a pointer to store the memory size.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

142

ADT_L1_GetVersionInfo
ADT_L0_UINT32 ADT_L1_GetVersionInfo (ADT_L0_UINT32 devID,
 ADT_L0_UINT16 * peVersion,
 ADT_L0_UINT32 * layer0ApiVersion,
 ADT_L0_UINT32 * layer1ApiVersion)

This function gets PE (firmware version and the Layer 0 and Layer 1 API version
numbers.
The PE version is a 16-bit unsigned integer interpreted as a hexadecimal version
number.
For API version numbers, the returned value is a 32-bit unsigned integer. This is
interpreted in octets similar to an IP address. For example, a value of 0x12345678
would be interpreted by first separating the octets (or bytes) to 0x12.0x34.0x56.0x78,
then converting these octets to decimal values resulting in version 18.52.86.120.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
peVersion is a pointer to store the PE (firmware) version.
layer0ApiVersion is a pointer to store the L0 API version.
layer1ApiVersion is a pointer to store the L1 API version.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

Example Code:

printf("Checking Protocol Engine (PE) and API versions . . . ");
 status = ADT_L1_GetVersionInfo(DEVID, &peVersion, &l0Version, &l1Version);
 if (status == ADT_SUCCESS)
 {
 printf("Success.\n");
 printf(" PE version = %04X\n", peVersion);
 printf(" L0 API version = %d.%d.%d.%d\n",

(l0Version & 0xFF000000) >> 24,(l0Version & 0x00FF0000) >> 16,
(l0Version & 0x0000FF00) >> 8, l0Version & 0x000000FF);

 printf(" L1 API version = %d.%d.%d.%d\n",
(l1Version & 0xFF000000) >> 24,(l1Version & 0x00FF0000) >> 16,
(l1Version & 0x0000FF00) >> 8, l1Version & 0x000000FF);

 }
 else printf("FAILURE - Error = %d\n", status);

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

143

ADT_L1_ProgramBoardFlash
ADT_L0_UINT32 ADT_L1_ProgramBoardFlash (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numBytes,
 ADT_L0_UINT8 * fpga_load_bytes)

This function programs the FLASH memory for the BOARD. WARNING - This affects
ALL channels on the board. Do not use this function if other applications are using
other channels on the board.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numBytes is the number of bytes to load.
fpga_load_bytes is a pointer to the bytes to load.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_DEV_TYPE - Unsupported board type
ADT_FAILURE - Completed with error

ADT_L1_ReadDeviceMem32
ADT_L0_UINT32 ADT_L1_ReadDeviceMem32 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 offset,
 ADT_L0_UINT32 * pData,
 ADT_L0_UINT32 count)

This function reads memory from a device in 32-bit words. The API determines the
offset to the selected channel internally, so the memory offset to read provided by
the caller is an offset in CHANNEL memory rather than BOARD memory.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
offset is the BYTE offset from the start of CHANNEL memory (not an offset from start of
board memory).
pData is a pointer to store the word(s) read.
count is the number of 32-bit words to read.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

144

ADT_L1_WriteDeviceMem32
ADT_L0_UINT32 ADT_L1_WriteDeviceMem32 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 offset,
 ADT_L0_UINT32 * pData,
 ADT_L0_UINT32 count)

This function writes memory to a device in 32-bit words. The API determines the
offset to the selected channel internally, so the memory offset to write provided by
the caller is an offset in CHANNEL memory rather than BOARD memory.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
offset is the BYTE offset from the start of CHANNEL memory (not an offset from start of
board memory).
pData is a pointer to the word(s) to be written.
count is the number of 32-bit words to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_msSleep
ADT_L0_UINT32 ADT_L1_msSleep(ADT_L0_UINT32 milliSecTick)

This function calls the ADT_L0 operating system (OS) sleep function. Accuracy is
OS dependent.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
milliSecTick is the sleep time in milliseconds.

Returns:
ADT_SUCCESS - Completed without error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

145

ADT_L1_ENET_SetIpAddr
ADT_L0_UINT32 ADT_L1_ENET_SetIpAddr (ADT_L0_UINT32 devID,

ADT_L0_UINT32 ServerIpAddr,
ADT_L0_UINT32 ClientIpAddr)

This function is only used for ENET devices and assigns the client and server IP
addresses for the ENET device. These settings apply to the entire ENET device and
are assigned by the BoardType and BoardNumber fields of the device ID.
The Client IP Address is the IP address of the host computer (where the API
application is running) for the appropriate adapter.
The Server IP Address is the IP address of the ENET device.

THIS FUNCTION MUST BE CALLED BEFORE ATTEMPTING TO INITIALIZE THE
ENET DEVICE. This function provides the IP addresses needed to communicate
with the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
ServerIpAddr – 32-bit IP address of the ENET device.
ClientIpAddr – 32-bit IP address of the host system/adapter.

Returns:

ADT_SUCCESS – Completed successfully
ADT_ERR_BAD_INPUT – Not an ENET device

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

146

ADT_L1_ENET_GetIpAddr
ADT_L0_UINT32 ADT_L1_ENET_GetIpAddr (ADT_L0_UINT32 devID,

ADT_L0_UINT32 *pServerIpAddr,
ADT_L0_UINT32 *pClientIpAddr)

This function is only used for ENET devices and gets the client and server IP
addresses for the ENET device, as previously assigned by a call to
ADT_L1_ENET_SetIpAddr. These settings apply to the entire ENET device and are
assigned by the BoardType and BoardNumber fields of the device ID.
The Client IP Address is the IP address of the host computer (where the API
application is running) for the appropriate adapter.
The Server IP Address is the IP address of the ENET device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pServerIpAddr – pointer to store the 32-bit IP address of the ENET device.
pClientIpAddr – pointer to store the 32-bit IP address of the host system/adapter.

Returns:

ADT_SUCCESS – Completed successfully
ADT_ERR_BAD_INPUT – Not an ENET device

ADT_L1_ENET_ADCP_Reset
ADT_L1_UINT32 ADT_L1_ENET_ADCP_Reset (ADT_L0_UINT32 devID)

This function is only used with ENET devices and transmits an ADCP RESET
command to the device. This resets the entire ENET device and must use the
device ID for the Global device.

Parameters:
devID is the 32-bit Device Identifier.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane, must be ENET

device
ADT_ERR_UNSUPPORTED_CHANNEL - Unsupported channel type, must be Global

device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

147

ADT_L1_ENET_ADCP_GetStatistics
ADT_L0_UINT32 ADT_L1_ENET_ADCP_GetStatistics (ADT_L0_UINT32 devID,

ADT_L0_UINT32 *pPortNum,
ADT_L0_UINT32 *pTransactions,
ADT_L0_UINT32 *pRetries,
ADT_L0_UINT32 *pFailures)

This function is only used with ENET devices and gets statistical information on the
ADCP communications with the device. This returns the transaction count, error
count, and failure count. A transaction is a command packet and response packet
pair (normally a memory read or write operation). A retry is anything that causes a
retry (bad sequence number in response packet, bad status value in response
packet, or timeout waiting for response packet). A failure is any transaction where all
retries were attempted but did not succeed.

Parameters:
devID is the 32-bit Device Identifier.

 pPortNum is a pointer to store the UDP port number for the device.
 pTransactions is a pointer to store the number of transactions.
 pRetries is a pointer to store the number of retries.
 pFailures is a pointer to store the number of failures.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane, must be ENET

device
ADT_ERR_ENET_NOTRUNNING – ENET services not running, device not initialized

ADT_L1_ENET_ADCP_ClearStatistics
ADT_L0_UINT32 ADT_L1_ENET_ADCP_ClearStatistics

(ADT_L0_UINT32 devID)
This function is only used with ENET devices and clears the statistical information on
the ADCP communications with the device. This clears the transaction count, error
count, and failure count.

Parameters:
devID is the 32-bit Device Identifier.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_BACKPLANE - Unsupported backplane, must be ENET

device
ADT_ERR_ENET_NOTRUNNING – ENET services not running, device not initialized

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

148

ADT_L1_Error_to_String
char * ADT_L1_Error_to_String(ADT_L0_UINT32 err_status)

This function converts an error/status code to a string.

Parameters:
err_status is the error/status code to convert to a string.

Returns:
String corresponding to the error/status code.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

149

Board Global Functions
This section describes the Layer 1 API functions that use the board-level global
registers. These functions are ONLY usable for Device IDs with the channel type
field set to 0x01 (globals). These functions are defined in the file
ADT_L1_BoardGlobal.c.

ADT_L1_Global_TimeClear
ADT_L0_UINT32 ADT_L1_Global_TimeClear (ADT_L0_UINT32 devID)

This function clears the time-tag registers for all channels on the board.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

ADT_L1_Global_ConfigExtClk
ADT_L0_UINT32 ADT_L1_Global_ConfigExtClk (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 clkFreq,
 ADT_L0_UINT32 clkSrcIn,
 ADT_L0_UINT32 clkSrcOut)

This function configures the Global CSR external clock settings. If both clkSrcIn and
clkSrcOut are set to NONE, this completely disables external clock input and output.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
clkFreq must be 1, 5, or 10 (1MHz, 5MHz, or 10MHz).
clkSrcIn selects RS485, TTL, or NONE for the ext clock input (1=RS485, 2=TTL, else
NONE).
clkSrcOut selects RS485, TTL, or NONE for the ext clock output (1=RS485, 2=TTL, else
NONE).

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID or invalid clkFreq
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

150

ADT_L1_Global_I2C_ReadTemp
ADT_L0_UINT32 ADT_L1_Global_I2C_ReadTemp (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 temp_addr,
 ADT_L0_UINT32 *temp)

This function reads a temperature from the I2C bus.
If the temp data MSB bit D10 = 0 then the temperature is positive and
Temp value (°C) = + (Temp data) * 0.125 °C
If the temp data MSB bit D10 = 1 then the temperature is negative and
Temp value (°C) = – (2’s complement of Temp data) * 0.125 °C

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
temp_addr is the offset to the temp sensor to read
(ADT_L1_GLOBAL_I2C_TS_FPGA_ADDR or
ADT_L1_GLOBAL_I2C_TS_XCVR_ADDR).
temp is the pointer to store the temperature value.

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

ADT_L1_Global_I2C_SetIrigDac
ADT_L0_UINT32 ADT_L1_Global_I2C_SetIrigDac (ADT_L0_UINT32 devID,

ADT_L0_UINT32 value)

This function writes a voltage value to the IRIG DAC on the I2C bus.
The LSB of the value represents 3.22266mV (3.3V / 1024).
To set the DAC output to 1.65V, the value should be set to 512 (0x200).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
value is the value to set for the IRIG DAC (0 to 1023).

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

151

ADT_L1_Global_I2C_SetVVDac
ADT_L0_UINT32 ADT_L1_Global_I2C_SetVVDac (ADT_L0_UINT32 devID,

ADT_L0_UINT32 channel,
ADT_L0_UINT32 value)

This function writes a voltage value to the 1553 Variable Voltage DAC for the
specified 1553 channel on the I2C bus.
The LSB of the value represents 4.8828125mV (5V / 1024).
Setting 5V (1023) on the DAC selects MAXIMUM voltage output from the 1553
transceiver (about 22V peak to peak).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
channel is the 1553 channel, zero-indexed (0=CH1, 1=CH2, 2=CH3, 3=CH4).
value is the value to set for the VV DAC (0 to 1023).

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

ADT_L1_Global_CalibrateIrigDac
ADT_L0_UINT32 ADT_L1_Global_CalibrateIrigDac (ADT_L0_UINT32 devID)

This function calibrates the IRIG DAC for the input IRIG signal.

NOTE: There must be a valid IRIG signal to the board for this function to succeed.
This function may take several seconds/minutes to complete depending on your
machine.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

152

ADT_L1_Global_CalibrateIrigDacOptions
ADT_L0_UINT32 ADT_L1_Global_CalibrateIrigDacOptions (
 ADT_L0_UINT32 devID,
 ADT_L0_UINT32 options)

This function calibrates the IRIG DAC for the input IRIG signal. The non-option
CalibrateIrigDac() function above adjusts the calibration in 1/1024 steps, which can
take many seconds/minutes depending on the machine. This function provides an
options field so the user can program the calibration value from with a 8-bit value of
(1-255)/1024. The user may want to experiment with the value that is best for their
system and IRIG signal to best achieve lock. Starting with an options value of 10
decimal would be best. The 8-bit calibration is located in the 8 MSB of the options
word, so shift 24 bits left to set the value (CalValue << 24).

NOTE: There must be a valid IRIG signal to the board for this function to succeed.
This function may take several seconds/minutes to complete depending on your
machine and options value setting.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
options is a 32-bit UINT parameter where the 8-bit calibration setting in located in bits 24-
31.

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

153

ADT_L1_Global_ReadIrigTime
ADT_L0_UINT32 ADT_L1_Global_ReadIrigTime (ADT_L0_UINT32 devID,

ADT_L0_UINT32 *irigHigh,
ADT_L0_UINT32 *irigLow)

This function reads the IRIG time registers. These registers contain the following
information:

IRIG Time Low – 0x000000CC
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Seconds

0

 BCD MinutesBCD Hours

IRIG Time High– 0x000000C8
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Days

0

 BCD Years

WARNING – The IRIG registers contain the time of the PREVIOUS 1-second
IRIG sync, so the time in the registers is always ONE SECOND BEHIND the
actual time. This function corrects for this by adding one second to the time in
the IRIG time registers – this function returns the corrected time (API version
2.4.1.8 and later).

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
irigHigh is a pointer to store the IRIG high 32-bits.
irigLow is a pointer to store the IRIG low 32-bits.

Returns:

ADT_SUCCESS - Completed without error
ADT_BAD_INPUT - Invalid device ID
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

154

Memory Management Functions
This section describes the Layer 1 API Memory Management functions. These
functions are defined in the file ADT_L1_MemMgmt.c.

ADT_L1_InitMemMgmt
ADT_L0_UINT32 ADT_L1_InitMemMgmt (ADT_L0_UINT32 devID,

 ADT_L0_UINT32 startupOptions)

This function initializes a memory management for a device - initializes the internal
data structures for memory management, determines the size of user memory by
product type, and performs a memory test on user memory.

A user option parameter is provided to designate if ADT_L1_BIT_MemoryTest
should be called. If startupOptions is zero (default), then BIT_MemoryTest will be
called. Memory test takes several seconds and may not be desirable for embedded
applications where a fast startup is desired.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
startupOptions are user selected startup options defined as follows:

#define ADT_L1_API_DEVICEINIT_NOMEMTEST 0x00000002

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_MEM_MGT_INIT - Mem management already initialized for the devID
ADT_ERR_BAD_DEV_TYPE - Unknown device type in devID

ADT_L1_CloseMemMgmt
ADT_L0_UINT32 ADT_L1_CloseMemMgmt (ADT_L0_UINT32 devID)

This function frees resources and closes a memory management for a device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_MEM_MGT_NO_INIT - Memory management has not been initialized for the

device ID

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

155

ADT_L1_GetMemoryAvailable
ADT_L0_UINT32 ADT_L1_GetMemoryAvailable (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * memAvailable)

This function gets the amount of memory available (in bytes) in the data structure
memory area.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
memAvailable is a pointer to store the number of BYTES available.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_MEM_MGT_NO_INIT - Memory management has not been initialized for the

device ID
ADT_FAILURE - Completed with error

 ADT_L1_MemoryAlloc
ADT_L0_UINT32 ADT_L1_MemoryAlloc (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 memSize,
 ADT_L0_UINT32 * pMemOffset)

This function allocates memory from the data structure memory area.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
memSize is the size in BYTES of memory requested.
pMemOffset is the pointer to store the starting BYTE offset of the allocated block of
memory.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_MEM_MGT_NO_MEM - Requested memory is not available
ADT_ERR_MEM_MGT_NO_INIT - Memory management has not been initialized for the

device ID

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

156

ADT_L1_MemoryFree
ADT_L0_UINT32 ADT_L1_MemoryFree (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 memStart,
 ADT_L0_UINT32 memSize)

This function frees previously allocated memory in the data structure memory area.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
memStart is the starting BYTE offset of the memory block.
memSize is the size in BYTES of the memory block.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_MEM_MGT_NO_INIT - Memory management has not been initialized for the

device ID
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

157

BIT Functions
This section describes the Layer 1 API Built-In-Test functions. These functions
are defined in the file ADT_L1_BIT.c.

ADT_L1_BIT_MemoryTest
ADT_L0_UINT32 ADT_L1_BIT_MemoryTest (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 start,

ADT_L0_UINT32 end,
ADT_L0_UINT32 * addr,
ADT_L0_UINT32 * exp,
ADT_L0_UINT32 * act)

This function performs a memory test on the selected range of memory. The memory
is tested five times with different values (0x55555555, 0xAAAAAAAA, 0xFFFFFFFF,
value=offset, and 0x00000000) where first the value is written to the entire range of
memory and then each word is read and checked to see if it matches the expected
value. If a failure occurs, the function provides the memory offset, the expected
value, and the actual value read. This test can take several seconds.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
start is the starting offset (BYTE offset)
end is the ending offset (BYTE offset)
addr is a pointer to store the memory offset (BYTE offset) on failure
exp is a pointer to store the expected value on failure
act is a pointer to store the actual value on failure

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_ERR_MEM_TEST_FAIL - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

158

ADT_L1_BIT_InitiatedBIT
ADT_L0_UINT32 ADT_L1_BIT_InitiatedBIT (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 *bitStatus)

This function performs INITIATED BIT. This test should only be run when the device
is in a non-operational safe state – this test will overwrite data structures in memory.
If this function returns ADT_FAILURE you can examine the value of the BIT Status
Register to see what failed.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
bitStatus is the a pointer to store the value of the BIT Status Register.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_ERR_TIMEOUT - Timeout error
ADT_FAILURE - Completed with error

ADT_L1_BIT_PeriodicBIT
ADT_L0_UINT32 ADT_L1_BIT_PeriodicBIT (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 *bitStatus)

This function checks PERIODIC BIT. This can be safely run during normal
operation. If this function returns ADT_FAILURE you can examine the value of the
BIT Status Register to see what failed.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
bitStatus is the a pointer to store the value of the BIT Status Register.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

159

Interrupt Functions
This section describes the Layer 1 API Interrupt functions. These functions are
defined in the file ADT_L1_INT.c.

ADT_L1_INT_HandlerAttach
ADT_L0_UINT32 ADT_L1_INT_HandlerAttach (ADT_L0_UINT32 devID,

void * pUserISR,
void * pUserData)

This function attaches an interrupt handler function for the device. If a pointer to user
context data is provided in the pUserData parameter, this will be passed back to the
user interrupt handler function when the interrupt occurs.

NOTE: AltaAPI versions prior to v2.2.1.0 did not include the pUserData parameter.
This needs to be added when porting code from older API versions.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pUserISR is a pointer to the user int handler function.
pUserData is a pointer to the user context information – set to NULL if not used.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_INT_HandlerDetach
ADT_L0_UINT32 ADT_L1_INT_HandlerDetach (ADT_L0_UINT32 devID)

This function detaches the interrupt handler function for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

161

1553 General Functions
This section describes the Layer 1 API 1553 General functions. These functions
are defined in the file ADT_L1_1553_General.c.

ADT_L1_1553_InitDefault
ADT_L0_UINT32 ADT_L1_1553_InitDefault (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries)

This function initializes a 1553 channel, allocates interrupt queue, and sets defaults
for external bus and 1553B protocol. This function calls ADT_L1_1553_InitChannel
and ADT_L1_1553_SetConfig.

Also see the next function, ADT_L1_1553_InitDefault_ExtenedOptions. This
function provides more options for startup of the device channel for resets and
forcing API initialization, which may be useful for development and embedded
applications.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numIQEntries is the number of interrupt queue entries to allocate.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_ERR_BAD_CHAN_NUM - Bad channel number or channel does not exist
ADT_ERR_BITFAIL - Failed Built-In Test
ADT_ERR_DEVICEINUSE - Device in use (see explanation in the Layer 1 API

Operational Discussion under “Initializing and Closing the API”)
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

162

ADT_L1_1553_InitDefault_ExtendedOptions
ADT_L0_UINT32 ADT_L1_1553_InitDefault_ExtendedOptions

 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries,

ADT_L0_UINT32 startupOptions)

This function initializes a 1553 channel, allocates interrupt queue, and sets defaults
for external bus and 1553B protocol. This function calls ADT_L1_1553_InitChannel
and ADT_L1_1553_SetConfig.

Additional startup options are provided to allow the user to specify to skip Force API
initialization (need for previous soft application crashes), skip Memory Test (for fast
startups), and perform a hard reset on the 1553 channel (not the card – this clears
key channel protocol engine registers). The ADT_L1_API_DEVICEINIT_NOKP
option can be used to bypass loading the driver kernel plug-in but in most cases this
option should NOT be set.

This function may be preferred over ADT_L0_UINT32 ADT_L1_1553_InitDefault
where the user always wants the 1553 channel to initialize regardless of previous
application or hardware states.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numIQEntries is the number of interrupt queue entries to allocate.

 startupOptions are user selected startup options defined as follows:
#define ADT_L1_API_DEVICEINIT_FORCEINIT 0x00000001
#define ADT_L1_API_DEVICEINIT_NOMEMTEST 0x00000002
#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004
#define ADT_L1_API_DEVICEINIT_ROOTPERESET 0x80000000

The ADT_L1_API_DEVICEINIT_NOKP option can be used to
bypass loading the driver kernel plug-in but in most cases this
option should NOT be set. This option only applies to platforms
that use the Jungo WinDriver software for the device driver
(Windows, Linux, Solaris). If this option is used then the application
cannot use hardware interrupts. The kernel plug-in is required for
hardware interrupts.

The ADT_L1_API_DEVICEINIT_FORCEINIT option should ONLY
be used in development and testing. This option is provided for
cases where the device may not have been closed properly and is
used to override the ADT_ERR_DEVICEINUSE error. This option
should NOT be used as the normal initialization method for your

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

163

application, because it bypasses protection against two applications
using the same device.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_ERR_BAD_CHAN_NUM - Bad channel number or channel does not exist
ADT_ERR_BITFAIL - Failed Built-In Test
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

164

ADT_L1_1553_GetConfig
ADT_L0_UINT32 ADT_L1_1553_GetConfig (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsMultRT,
 ADT_L0_UINT32 * pIs1553B,
 ADT_L0_UINT32 * pIsRt31Bcast,
 ADT_L0_UINT32 * pUseIntBus,
 ADT_L0_UINT32 * pStsRespTimeout_us)

This function gets the 1553 options for a channel. These options are:
Multiple RT - 1 for multiple RT, 0 for single RT.
1553B Protocol - 1 for 1553B protocol, 0 for 1553A protocol.
RT31 Broadcast - 1 if RT31 is broadcast, 0 if RT31 is a normal RT address.
Use Internal Bus - 1 to use internal bus, 0 to use external bus.
Status Response Timeout - time (in microseconds) that the BC and BM will allow for
an RT to respond with a status word before declaring a "no-response" condition.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIsMultRT is a pointer to store the MRT setting.
pIs1553B is a pointer to store the protocol setting.
pIsRt31Bcast is a pointer to store the RT31 setting.
pUseIntBus is a pointer to store the internal bus setting.
pStsRespTimeout_us is a pointer to store the timeout setting.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

165

ADT_L1_1553_GetPEInfo
ADT_L0_UINT32 ADT_L1_1553_GetPEInfo (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * peInfo)

This function gets 1553 PE ID and Version information. Also See:
ADT_L1_GetVersionInfo()

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
peInfo is a pointer to store the PE ID and Version.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_InitChannel
ADT_L0_UINT32 ADT_L1_1553_InitChannel (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries)

This function initializes a 1553 channel and allocates interrupt queue.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numIQEntries is the number of interrupt queue entries to allocate.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

166

ADT_L1_1553_InitChannelLive
ADT_L0_UINT32 ADT_L1_1553_InitChannelLive (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries)

This function initializes a 1553 channel and allocates interrupt queue, but does NOT
clear the RT control blocks. Use this function instead of ADT_L1_1553_InitChannel
if the channel is configured to come up “live” as a Remote Terminal (using the
external RT address lines).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numIQEntries is the number of interrupt queue entries to allocate.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

167

ADT_L1_1553_SetConfig
ADT_L0_UINT32 ADT_L1_1553_SetConfig (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 isMultRT,
 ADT_L0_UINT32 is1553B,
 ADT_L0_UINT32 isRt31Bcast,
 ADT_L0_UINT32 useIntBus,
 ADT_L0_UINT32 stsRespTimeout_us)

This function sets the 1553 options for a channel. These options are:
Multiple RT - 1 for multiple RT, 0 for single RT.
1553B Protocol - 1 for 1553B protocol, 0 for 1553A protocol.
RT31 Broadcast - 1 if RT31 is broadcast, 0 if RT31 is a normal RT address.
Use Internal Bus - 1 to use internal bus, 0 to use external bus.
Status Response Timeout - time (in microseconds) that the BC and BM will allow for
an RT to respond with a status word before declaring a "no-response" condition.

NOTE – Broadcast (RT31) messages are handled differently for Single-RT mode
and Multiple-RT (default) mode. In Single-RT mode the Broadcast messages will go
to the same CDP buffer that would be used for non-broadcast messages. In
Multiple-RT mode you must setup RT31 with the desired subaddress buffers to
receive Broadcast messages when operating as an RT.
The example program ADT_L1_1553_ex_rt2_bcast_srt.c demonstrates this for
Single-RT mode.
The example program ADT_L1_1553_ex_rt2_bcast_mrt.c demonstrates this for
Multiple-RT mode.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
isMultRT set to 1 to enable multiple RT mode (ZERO = Single RT).
is1553B set to 1 for 1553B handling of mode codes (ZERO = 1553A).
isRt31Bcast set to 1 for RT31 to be BROADCAST (ZERO = RT31 is a valid RT address).
useIntBus set to 1 to use INTERNAL bus (ZERO = External bus).
stsRespTimeout_us is the BC/BM status response timeout in microseconds.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

168

ADT_L1_1553_TimeClear
ADT_L0_UINT32 ADT_L1_1553_TimeClear (ADT_L0_UINT32 devID)

This function clears the time tag value for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_FAILURE - Completed with error

ADT_L1_1553_TimeGet
ADT_L0_UINT32 ADT_L1_1553_TimeGet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pTimeHigh,
 ADT_L0_UINT32 * pTimeLow)

This function gets the time tag value for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pTimeHigh is a pointer to store the upper 32-bits of the 64-bit time tag value.
pTimeLow is a pointer to store the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

169

ADT_L1_1553_TimeSet
ADT_L0_UINT32 ADT_L1_1553_TimeSet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 timeHigh,
 ADT_L0_UINT32 timeLow)

This function sets the time tag value for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
timeHigh is the upper 32-bits of the 64-bit time tag value.
timeLow is the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

170

ADT_L1_1553_IrigLatchedTimeGet
ADT_L0_UINT32 ADT_L1_1553_IrigLatchedTimeGet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIrigTimeHigh, ADT_L0_UINT32 * pIrigTimeLow,
 ADT_L0_UINT32 * pIntTimeHigh, ADT_L0_UINT32 * pIntTimeLow,
 ADT_L0_UINT32 * pDeltaTimeHigh, ADT_L0_UINT32 * pDeltaTimeLow)

This function gets the latched IRIG and internal time value for the channel. These
values are latched by the firmware on every 1-second IRIG sync (if there is a good
lock to the IRIG signal). Use the ADT_L1_Global_CalibrateIrigDac function to
calibrate to the IRIG signal.

The latched IRIG time is in IRIG BCD format, as shown below:

IRIG Time Low – 0x000000CC
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Seconds

0

 BCD MinutesBCD Hours

IRIG Time High– 0x000000C8
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Days

0

 BCD Years

NOTE:
IRIG Standard 200-98 – The IRIG-B time code does not include years.
IRIG Standard 200-04 – The IRIG-B time code can include years.

The latched internal time is in 64-bit binary format (not BCD), with a 20ns LSB. The
delta time is the difference between the IRIG time (converted from BCD to binary)
and the internal time. Add the delta time to internal time values (like the time stamp
on a CDP) to convert them to binary IRIG time.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIrigTimeHigh is a pointer to store the upper 32-bits of the 64-bit IRIG BCD time
(latched).
pIrigTimeLow is a pointer to store the lower 32-bits of the 64-bit IRIG BCD time (latched).
pIntTimeHigh is a pointer to store the upper 32-bits of the 64-bit internal time (latched).
pIntTimeLow is a pointer to store the lower 32-bits of the 64-bit internal time (latched).
pDeltaTimeHigh is a pointer to store the upper 32-bits of the 64-bit delta time.
pDeltaTimeLow is a pointer to store the lower 32-bits of the 64-bit delta time.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

171

ADT_L1_1553_PBTimeGet
ADT_L0_UINT32 ADT_L1_1553_PBTimeGet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pTimeHigh,
 ADT_L0_UINT32 * pTimeLow)

This function gets the Playback time tag value for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pTimeHigh is a pointer to store the upper 32-bits of the 64-bit time tag value.
pTimeLow is a pointer to store the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_FAILURE - Completed with error

ADT_L1_1553_PBTimeSet
ADT_L0_UINT32 ADT_L1_1553_TimeSet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 timeHigh,
 ADT_L0_UINT32 timeLow)

This function sets the Playback time tag value for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
timeHigh is the upper 32-bits of the 64-bit time tag value.
timeLow is the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

172

ADT_L1_1553_UseExtClk
ADT_L0_UINT32 ADT_L1_1553_UseExtClk (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 useExtClk,
 ADT_L0_UINT32 clkFreq)

This function enables the channel to use an external clock.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
useExtClk enables or disables external clock (1=enable, 0=disable).
clkFreq must be 1, 5, or 10 (1MHz, 5MHz, or 10MHz).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid value for clkFreq
ADT_FAILURE - Completed with error

ADT_L1_1553_ForceTrgOut
ADT_L0_UINT32 ADT_L1_1553_ForceTrgOut (ADT_L0_UINT32 devID)

This function causes the channel to generate an output trigger.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

173

ADT_L1_1553_SC_ArmTrigger
ADT_L0_UINT32 ADT_L1_1553_SC_ArmTrigger (ADT_L0_UINT32 devID,

ADT_L0_UINT32 bus,
ADT_L0_UINT32 trigger,
ADT_L0_UINT32 mask_value)

This function arms the Signal Capture for a trigger.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
bus identifies which bus to use (zero for bus A, non-zero for bus B).
trigger is the value to write to the Signal Capture CSR.
mask_value is the value to write to the Signal Capture Mask\Value Register.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_SC_ReadBuffer
ADT_L0_UINT32 ADT_L1_1553_SC_ReadBuffer (ADT_L0_UINT32 devID,

ADT_L0_UINT32 bus,
ADT_L0_UINT8 *buffer)

This function reads the Signal Capture data buffer for the specified bus.
This reads 2048 unsigned 8-bit values.
Each value represents a voltage where 0 is -15 volts and 255 is +15 volts.
Therefore the voltage range is 30 volts over 256 possible values, or 0.117 volts per
LSB.
Each of the 2048 values represents a time period of 50 nanoseconds. Therefore the
entire buffer represents 102.4 microseconds of time.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
bus identifies which bus to use (zero for bus A, non-zero for bus B).
buffer is an array of 2048 unsigned 8-bit values.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

174

ADT_L1_1553_CDP_Calculate_1760_Checksum
ADT_L0_UINT32 ADT_L1_1553_CDP_Calculate_1760_Checksum

(ADT_L1_1553_CDP *pCdp,
 ADT_L0_UINT32 wordCount,
 ADT_L0_UINT16 *pChecksum)

This function calculates the MIL-STD-1760 checksum for a CDP buffer. Refer to
MIL-STD-1760C, Appendix B, section B.4.1.5.2.1 for a description of the MIL-STD-
1760 checksum algorithm.

The user passes in a pointer to the CDP structure containing the data words, a word
count value, and a pointer to store the 16-bit checksum result. The word count
parameter is the number of data words to include in the checksum calculation (which
will be the message word count minus 1 because the checksum value will go in the
last data word).

For example, a four word message will use the fourth data word to contain the
checksum, so the first three data words will be used to calculate the checksum. If
the first three data words are 0x0001, 0xC000, and 0x0F00, we will pass the CDP
containing these data words to this function with a wordCount parameter of 3. The
function will calculate the checksum and pass it back in the pChecksum parameter.
For the three data words we have specified, the resulting checksum should be
0x1E0B. The user can now put this value in the fourth data word and write the CDP
to device memory for transmission.

Parameters:
pCdp is a pointer to the CDP structure.
wordCount is the number of data words (1 to 31) to include in the checksum.
pChecksum is a pointer to store the checksum value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid word count or null pointer
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

175

ADT_L1_1553_IntervalTimerGet
ADT_L0_UINT32 ADT_L1_1553_IntervalTimerGet(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 *pIntvlTmrReg);

This function retrieves the Root PE Interval Timer Register. The register is
comprised of 24 MSB, 1 usec time value and 5 control and status bits in the 8
LSB. The following provides the ADT_L1.h definitions:

#define ADT_L1_1553_PE_INTVLTMR 0x004C
#define ADT_L1_1553_PE_INTVLTMR_STARTSTOP 0x00000001
#define ADT_L1_1553_PE_INTVLTMR_STARTONTRIG 0x00000002
#define ADT_L1_1553_PE_INTVLTMR_EXTTRIG 0x00000008
#define ADT_L1_1553_PE_INTVLTMR_SETINT 0x00000010
#define ADT_L1_1553_PE_INTVLTMR_TIMECOMP 0x00000080
#define ADT_L1_1553_PE_INTVLTMR_TIME24 0xFFFFFF00
#define ADT_L1_1553_PE_INTVLTMR_TIMESHIFT 8

Also see the AltaCore-1553 manual for more detail definitions and actions of the
register bits.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIntrvlTmrReg is the pointer to the register value result.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Not a 1553 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

176

ADT_L1_1553_IntervalTimerSet
ADT_L0_UINT32 ADT_L1_1553_IntervalTimerGet(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 intvlTmrReg);

This function writes a user value to the Root PE Interval Timer Register. The
register is comprised of 24 MSB, 1 usec time value and 5 control and status bits
in the 8 LSB. The following provides the ADT_L1.h definitions:

#define ADT_L1_1553_PE_INTVLTMR 0x004C
#define ADT_L1_1553_PE_INTVLTMR_STARTSTOP 0x00000001
#define ADT_L1_1553_PE_INTVLTMR_STARTONTRIG 0x00000002
#define ADT_L1_1553_PE_INTVLTMR_EXTTRIG 0x00000008
#define ADT_L1_1553_PE_INTVLTMR_SETINT 0x00000010
#define ADT_L1_1553_PE_INTVLTMR_TIMECOMP 0x00000080
#define ADT_L1_1553_PE_INTVLTMR_TIME24 0xFFFFFF00
#define ADT_L1_1553_PE_INTVLTMR_TIMESHIFT 8

Also see the AltaCore-1553 manual for more detail definitions and actions of the
register bits.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
intrvlTmrReg is the user value to write to the Interval Register.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Not a 1553 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

177

1553 Interrupt Functions
This section describes the Layer 1 API 1553 interrupt functions. These functions
are defined in the file ADT_L1_1553_INT.c.

ADT_L1_1553_INT_CheckChannelIntPending
ADT_L0_UINT32 ADT_L1_1553_INT_CheckChannelIntPending

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsIntPending)

This function checks to see if an interrupt is pending for a given 1553 channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIsIntPending is a pointer to store the result (0 = no int pending, 1 = int pending).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_FAILURE - Completed with error

ADT_L1_1553_INT_DisableInt
ADT_L0_UINT32 ADT_L1_1553_INT_DisableInt (ADT_L0_UINT32 devID)

This function disables interrupts for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

178

ADT_L1_1553_INT_EnableInt
ADT_L0_UINT32 ADT_L1_1553_INT_EnableInt (ADT_L0_UINT32 devID)

This function enables interrupts for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_INT_GenInt
ADT_L0_UINT32 ADT_L1_1553_INT_GenInt (ADT_L0_UINT32 devID)

This function generates a test interrupt. This does NOT put an entry in the interrupt
queue. This function is useful for testing interrupts when developing a device driver
for a new operating system.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_INT_GetIntSeqNum
ADT_L0_UINT32 ADT_L1_1553_INT_GetIntSeqNum (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pSeqNum)

This function reads the interrupt sequence number for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pSeqNum is the pointer to store the sequence number.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

179

ADT_L1_1553_INT_IQ_ReadEntry
ADT_L0_UINT32 ADT_L1_1553_INT_IQ_ReadEntry (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pType,
 ADT_L0_UINT32 * pInfo)

This function reads one new entry from the interrupt queue. The pType word is the
“IQP Type and Sequence Number” word from the Interrupt Queue Packet, where the
upper 16-bits provide the interrupt type and the lower 16-bits provide a sequence
number. The pInfo word is one of the following:
For CDP interrupts, this is the “API Info Word” from the CDP that caused the
interrupt.
For BCCB interrupts, this is the “API Message Number” word from the BCCB that
caused the interrupt.
For PB and SG interrupts, this is the memory address (byte offset) to the PBCB or
SGCB that caused the interrupt.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “1553 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pType is the pointer to store the IQ type/seqnum.
pInfo is the pointer to store the CDP API INFO word, BCCB message number, PBCB
pointer, or SGCB pointer.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error
ADT_ERR_IQ_NO_NEW_ENTRY - No new entry in the queue

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

180

ADT_L1_1553_INT_IQ_ReadNewEntries
ADT_L0_UINT32 ADT_L1_1553_INT_IQ_ReadNewEntries

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 MaxNumEntries,
 ADT_L0_UINT32 * pNumEntries,
 ADT_L0_UINT32 * pType,
 ADT_L0_UINT32 * pInfo)

This function reads all new entries from the interrupt queue. . The pType word is the
“IQP Type and Sequence Number” word from the Interrupt Queue Packet, where the
upper 16-bits provide the interrupt type and the lower 16-bits provide a sequence
number. The pInfo word is one of the following:
For CDP interrupts, this is the “API Info Word” from the CDP that caused the
interrupt.
For BCCB interrupts, this is the “API Message Number” word from the BCCB that
caused the interrupt.
For PB and SG interrupts, this is the memory address (byte offset) to the PBCB or
SGCB that caused the interrupt.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “1553 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
maxNumEntries is the maximum number of entries to read (size of buffer).
pNumEntries is the pointer to store the number of messages read.
pType is the pointer to store the IQ type/seqnums (array sized by maxNumEntries).
pInfo is the pointer to store the CDP API INFO words (array sized by maxNumEntries).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

181

ADT_L1_1553_INT_IQ_ReadRawEntry
ADT_L0_UINT32 ADT_L1_1553_INT_IQ_ReadEntry (ADT_L0_UINT32 devID,
 ADT_L1_1553_INT *intbuffer)

This function reads one new raw entry from the interrupt queue. ADT_L1_1553_INT
has the following structure:

typedef struct adt_l1_1553_int {
 ADT_L0_UINT32 NextPtr;
 ADT_L0_UINT32 Type_SeqNum;
 ADT_L0_UINT32 IntData;
} ADT_L1_1553_INT;

NextPtr contains a pointer to the next interrupt queue entry. Type_SeqNum is the
“IQP Type and Sequence Number” word from the Interrupt Queue Packet, where the
upper 16-bits provide the interrupt type and the lower 16-bits provide a sequence
number. IntData is a pointer to the data structre that cause the intterupt.

• For CDP interrupts, IntData points to the CDP that caused the interrupt.
• For BCCB interrupts, IntData points to the BCCB that caused the interrupt.
• For PB and SG interrupts, IntData points to the PBCB or SGCB that caused

the interrupt.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “1553 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
int_buffer is the pointer to the ADT_L1_1553_INT data buffer type where the interrupt info
is stored.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error
ADT_ERR_IQ_NO_NEW_ENTRY - No new entry in the queue

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

182

ADT_L1_1553_INT_IQ_ReadNewRawEntries
ADT_L0_UINT32 ADT_L1_1553_INT_IQ_ReadNewEntries

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 MaxNumEntries,
 ADT_L0_UINT32 * pNumEntries,
 ADT_L1_1553_INT *intbuffer)

This function reads all new entries from the interrupt queue into an array of type
ADT_L1_1553_INT. ADT_L1_1553_INT has the following structure:

typedef struct adt_l1_1553_int {
 ADT_L0_UINT32 NextPtr;
 ADT_L0_UINT32 Type_SeqNum;
 ADT_L0_UINT32 IntData;
} ADT_L1_1553_INT;

NextPtr contains a pointer to the next interrupt queue entry. Type_SeqNum is the
“IQP Type and Sequence Number” word from the Interrupt Queue Packet, where the
upper 16-bits provide the interrupt type and the lower 16-bits provide a sequence
number. IntData is a pointer to the data structre that cause the intterupt.

• For CDP interrupts, IntData points to the CDP that caused the interrupt.
• For BCCB interrupts, IntData points to the BCCB that caused the interrupt.
• For PB and SG interrupts, IntData points to the PBCB or SGCB that caused

the interrupt.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “1553 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
maxNumEntries is the maximum number of entries to read (size of buffer).
pNumEntries is the pointer to store the number of messages read.
intbuffer is the pointer to store the raw interrupt data array (array sized by
maxNumEntries).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

183

ADT_L1_1553_INT_SetIntSeqNum
ADT_L0_UINT32 ADT_L1_1553_INT_SetIntSeqNum (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 seqNum)

This function writes the interrupt sequence number for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
seqNum is the sequence number to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

184

1553 Bus Monitor Functions
This section describes the Layer 1 API 1553 Bus Monitor functions. These
functions are defined in the file ADT_L1_1553_BM.c.

ADT_L1_1553_BM_BufferCreate
ADT_L0_UINT32 ADT_L1_1553_BM_BufferCreate (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numMsgs)

This function allocates and links the requested number of BM buffers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numMsgs is the number of BM CDP buffers requested.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_BM_BufferFree
ADT_L0_UINT32 ADT_L1_1553_BM_BufferFree (ADT_L0_UINT32 devID)

This function frees all board memory used for BM buffers.
WARNING - THIS COMPLETELY UN-INITIALIZES THE BM.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

185

ADT_L1_1553_BM_CDPRead
ADT_L0_UINT32 ADT_L1_1553_BM_CDPRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function reads a CDP for the BM.

NOTE: If you read a CDP buffer while the firmware is in the middle of processing
a message for that buffer, then the CDP Status Word will be 0xFFFFFFFF. If
you see this value, then you should read the buffer again until the CDP Status
Word is NOT 0xFFFFFFFF – you will then have a complete CDP buffer.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
cdpNum is the CDP number.
pCdp is a pointer to store the CDP structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_BM_CDPWrite
ADT_L0_UINT32 ADT_L1_1553_BM_CDPWrite (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function writes a CDP for the BM.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
cdpNum is the CDP number.
pCdp is a pointer to the CDP structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

186

ADT_L1_1553_BM_Clear
ADT_L0_UINT32 ADT_L1_1553_BM_Clear (ADT_L0_UINT32 devID)

This function clears BM message counter for the device. This will cause the BM to
reset to zero for the message numbers used in the “BM Count” field of the CDP for
each message.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_FAILURE - Completed with error

ADT_L1_1553_BM_Config
ADT_L0_UINT32 ADT_L1_1553_BM_Config (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 options)

This function configures BM options for the device by setting/clearing bits in the Root
BM CSR. The options parameter can be used to set or clear any of the following
Root BM CSR bits:

 ADT_L1_1553_BM_CSR_MSGTRGON 0x00000002
ADT_L1_1553_BM_CSR_WAITEXTTRG 0x00000004
ADT_L1_1553_BM_CSR_STORESPURDATA 0x00000008
ADT_L1_1553_BM_CSR_INTVLTMRRSVD3 0x00000010
ADT_L1_1553_BM_CSR_ENET_APMP_ENABLE 0x00000100
ADT_L1_1553_BM_CSR_ENET_APMP_PEIRIG 0x00000200

 ADT_L1_1553_BM_CSR_ENET_APMP_PEINTV 0x00000400
Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
options is the value to write to the Root BM CSR.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

187

ADT_L1_1553_BM_FilterRead
ADT_L0_UINT32 ADT_L1_1553_BM_FilterRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 * pRxFilters,
 ADT_L0_UINT32 * pTxFilters)

This function reads BM filter settings for the device. Each bit in a filter word (rx filters
or tx filters) corresponds to a subaddress. Bit 0 is SA 0, bit 1 is SA 1, etc. If the bit is
set then the BM will capture messages for that subaddress.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address to apply the filter for.
pRxFilters is a pointer to the filter word for RECEIVE subaddresses.
pTxFilters is a pointer to the filter word for TRANSMIT subaddresses.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_BM_FilterWrite
ADT_L0_UINT32 ADT_L1_1553_BM_FilterWrite (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 rxFilters,
 ADT_L0_UINT32 txFilters)

This function writes BM filter settings for the device. Each bit in a filter word (rx filters
or tx filters) corresponds to a subaddress. Bit 0 is SA 0, bit 1 is SA 1, etc. If the bit is
set then the BM will capture messages for that subaddress.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address to apply the filter for.
rxFilters is the filter word for RECEIVE subaddresses.
txFilters is the filter word for TRANSMIT subaddresses.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

188

ADT_L1_1553_BM_ReadNewMsgs
ADT_L0_UINT32 ADT_L1_1553_BM_ReadNewMsgs (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 maxNumMsgs,
 ADT_L0_UINT32 * pNumMsgs,
 ADT_L1_1553_CDP * pMsgBuffer)

This function reads all new messages from the BM buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
maxNumMsgs is the maximum number of messages to read (size of buffer).
pNumMsgs is the pointer to store the number of messages read.
pMsgBuffer is the pointer to store the message CDP records.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_FAILURE - Completed with error

ADT_L1_1553_BM_ReadNewMsgsDMA
ADT_L0_UINT32 ADT_L1_1553_BM_ReadNewMsgsDMA

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 maxNumMsgs,
 ADT_L0_UINT32 * pNumMsgs,
 ADT_L1_1553_CDP * pMsgBuffer)

This function reads all new messages from the BM buffer using DMA.
NOTE THAT ONLY SELECTED LAYER 0 SUPPORT DMA (currently Windows and
Linux) AND ONLY SELECTED BOARD TYPES SUPPORT DMA (those with the
PLX9056 PCI interface – PMC1553, PC104P1553, PCI1553, PMCMA4).
This function is not multiple-application/thread safe. This function should only be
used if one thread controls all channels on a given board that are using DMA.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
maxNumMsgs is the maximum number of messages to read (size of buffer).
pNumMsgs is the pointer to store the number of messages read.
pMsgBuffer is the pointer to store the message CDP records.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

189

ADT_L1_1553_BM_Start
ADT_L0_UINT32 ADT_L1_1553_BM_Start (ADT_L0_UINT32 devID)

This function starts BM operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:
ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_BM_Stop
ADT_L0_UINT32 ADT_L1_1553_BM_Stop (ADT_L0_UINT32 devID)

This function stops BM operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

191

1553 Remote Terminal Functions
This section describes the Layer 1 API 1553 Remote Terminal functions. These
functions are defined in the file ADT_L1_1553_RT.c.

ADT_L1_1553_RT_Close
ADT_L0_UINT32 ADT_L1_1553_RT_Close (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr)

This function un-initializes data structures and frees memory for the RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_Disable
ADT_L0_UINT32 ADT_L1_1553_RT_Disable (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr)

This function disables a specific RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

192

ADT_L1_1553_RT_Enable
ADT_L0_UINT32 ADT_L1_1553_RT_Enable (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr)

This function enables a specific RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_GetExternalRTAddr
ADT_L0_UINT32 ADT_L1_1553_RT_GetExternalRTAddr

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pRtAddr)

This function gets the external RT address for the device. Note that there must be a
valid external RT address set, with correct parity, and the external RT address
enable signal must be low (GND). Refer to the hardware manual for your specific
board type for information on these signals and pin-outs.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pRtAddr is the pointer to store the external RT address.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid parity on external RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

193

ADT_L1_1553_RT_GetLastCmd
ADT_L0_UINT32 ADT_L1_1553_RT_GetLastCmd (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 * pLastCmd)

This function gets the last command seen by the RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
pLastCmd is the pointer to store the last command word.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_GetOptions
ADT_L0_UINT32 ADT_L1_1553_RT_GetOptions (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 * pAllowDBC,
 ADT_L0_UINT32 * pTxInh_A,
 ADT_L0_UINT32 * pTxInh_B,
 ADT_L0_UINT32 * pClrSRonTxVectorWd)

This function gets the settings for a RT CB for transmitter inhibits and mode code
options.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
pAllowDBC is the pointer to store DBC setting (1 to ALLOW DYNAMIC BUS CONTROL
or 0 to IGNORE DYNAMIC BUS CONTROL).
pTxInh_A is the pointer to store BUS A INHIBIT setting (1 to INHIBIT BUS A or 0 to
ENABLE BUS A).
pTxInh_B is the pointer to store BUS B INHIBIT setting (1 to INHIBIT BUS B or 0 to
ENABLE BUS B).
pClrSRonTxVectorWd is the pointer to store CLEAR SR setting (1 to CLEAR SR BIT ON
TX VECTOR WORD or 0 to NOT CHANGE SR ON TX VECTOR WORD).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

194

ADT_L1_1553_RT_GetRespTime
ADT_L0_UINT32 ADT_L1_1553_RT_GetRespTime (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 * pRespTime100ns)

This function gets the Status Response time (100ns LSB) for the specified RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
pRespTime100ns is the pointer to store the response time (100ns LSB).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_GetSingleRTAddr
ADT_L0_UINT32 ADT_L1_1553_RT_GetSingleRTAddr

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pRtAddr)

This function gets the single RT address for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pRtAddr is the pointer to store the single RT address.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

195

ADT_L1_1553_RT_Init
ADT_L0_UINT32 ADT_L1_1553_RT_Init (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr)

This function initializes data structures for the RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_InjStsWordError
ADT_L0_UINT32 ADT_L1_1553_RT_InjStsWordError (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 syncErr,
 ADT_L0_UINT32 manchesterErr,
 ADT_L0_UINT32 parityErr)

This function configures a RT for errors on the status word. There are three
parameters that determine the error settings. These are syncErr, manchesterErr, and
parityErr. These parameters should be used in one of the following ways: If syncErr,
manchesterErr, and parityErr are all zero, no error will be injected. If syncErr is non-
zero, the sync pattern will be inverted. If manchesterErr is non-zero, a manchester
(zero-crossing) error will be injected on bit 3 of the word. If parityErr is non-zero, the
parity bit will be inverted. if both manchesterErr and parityErr are non-zero, a
manchester (zero-crossing) error will be injected on the parity bit.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
syncErr set to 1 for sync error or 0 for no sync error.
manchesterErr set to 1 for manchester error or 0 for no manchester error.
parityErr set to 1 for parity error or 0 for no parity error.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

196

ADT_L1_1553_RT_MC_CDPAllocate
ADT_L0_UINT32 ADT_L1_1553_RT_MC_CDPAllocate

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 modeCode,
 ADT_L0_UINT32 numCDP)

This function allocates and links the requested number of CDPs for the RT MODE
CODE.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
numCDP is the requested number of CDP buffers.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, or numCDP
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_MC_CDPFree
ADT_L0_UINT32 ADT_L1_1553_RT_MC_CDPFree (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 modeCode)

This function frees the RT MC Control Block and CDPs for the RT/MC and resets to
default buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, or numCDP
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

197

ADT_L1_1553_RT_MC_CDPRead
ADT_L0_UINT32 ADT_L1_1553_RT_MC_CDPRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 modeCode,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function reads a CDP for the RT MODE CODE.

NOTE: If you read a CDP buffer while the firmware is in the middle of processing
a message for that buffer, then the CDP Status Word will be 0xFFFFFFFF. If
you see this value, then you should read the buffer again until the CDP Status
Word is NOT 0xFFFFFFFF – you will then have a complete CDP buffer. If you
use interrupts to synchronize buffer reads to messages on the bus then you
should not see this case.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
cdpNum is the index of the CDP to write.
pCdp is a pointer to the CDP structure to be read.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, mode code, or cdpNum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

198

ADT_L1_1553_RT_MC_CDPReadWords
ADT_L0_UINT32 ADT_L1_1553_RT_MC_CDPRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 modeCode,

ADT_L0_UINT32 cdpNum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32, numOfWords,
 ADT_L0_UINT32 *pWords)

This function reads consecutive words from a CDP for the RT MODE CODE. The
user must reference a valid CDP wordOffset – see AltaCore manual or 1553 Quick
Reference for CDP structure. This function can save backplane cycles by reading
only selected words from an RT CDP.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
cdpNum is the CDP buffer number.
wordOffset is the word offset in to the CDP.
numOfWords is the number of words to read from the wordOffset of the CDP.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, modeCode, cdpNum, wordOffset or

numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

199

ADT_L1_1553_RT_MC_CDPWrite
ADT_L0_UINT32 ADT_L1_1553_RT_MC_CDPWrite (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 modeCode,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function writes a CDP for the RT MODE CODE.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
cdpNum is the index of the CDP to write.
pCdp is a pointer to the CDP structure to be written.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, mode code, or cdpNum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

200

ADT_L1_1553_RT_MC_CDPWriteWords
ADT_L0_UINT32 ADT_L1_1553_RT_MC_CDPWriteWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 modeCode,

ADT_L0_UINT32 cdpNum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function writes consecutive words from a CDP for the RT MODE CODE. The
user must reference a valid CDP wordOffset – see AltaCore manual or 1553 Quick
Reference for CDP structure. This function can save backplane cycles by writing
only selected words from an RT CDP.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
cdpNum is the CDP buffer number.
wordOffset is the word offset in to the CDP.
numOfWords is the number of words to read from the wordOffset of the CDP.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, modeCode, cdpNum, wordOffset or

numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

201

ADT_L1_1553_RT_MC_LegalizationRead
ADT_L0_UINT32 ADT_L1_1553_RT_MC_LegalizationRead (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 rtAddr,
ADT_L0_UINT32 tr,
ADT_L0_UINT32 modeCode,
ADT_L0_UINT32 * pIllegalBits)

This function reads the legalization settings for the RT MODE CODE.

Mode codes are legalized in the mode code (MC) control blocks (NOT in the SA0 or
SA31 structures).

In the legalization word for mode codes, the only bit that counts is the bit that
corresponds to the mode code number (for example, bit 17 for mode code 17).

Mode code 2 (transmit status) and mode code 18 (transmit last command) are
ALWAYS legal and cannot be illegalized.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
pIllegalBits is the pointer to store the value read.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address or subaddress
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

202

ADT_L1_1553_RT_MC_LegalizationWrite
ADT_L0_UINT32 ADT_L1_1553_RT_MC_LegalizationWrite (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 rtAddr,
ADT_L0_UINT32 tr,
ADT_L0_UINT32 modeCode,
ADT_L0_UINT32 illegalBits)

This function writes the legalization settings for the RT MODE CODE.

Mode codes are legalized in the mode code (MC) control blocks (NOT in the SA0 or
SA31 structures).

In the legalization word for mode codes, the only bit that counts is the bit that
corresponds to the mode code number (for example, bit 17 for mode code 17). The
easiest thing to do is to set ALL bits in the legalization word to the same value - 0 for
legal or 1 for illegal. The following sets mode code 16 to be illegal:

status = ADT_L1_1553_RT_MC_LegalizationWrite(DEVID, 1, 1, 16, 0xFFFFFFFF);

Mode code 2 (transmit status) and mode code 18 (transmit last command) are
ALWAYS legal and cannot be illegalized.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
modeCode is the mode code.
illegalBits contains one bit for each word count, 0=legal, 1=illegal.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address or subaddress
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

203

ADT_L1_1553_RT_Monitor
ADT_L0_UINT32 ADT_L1_1553_RT_Monitor (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 isMonitor)

This function configures a RT to either MONITOR or RESPOND.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
isMonitor set to 1 for MONITOR or 0 for RESPOND.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

204

ADT_L1_1553_RT_ReadStsWordError
ADT_L0_UINT32 ADT_L1_1553_RT_ReadStsWordError

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 * pSyncErr,
 ADT_L0_UINT32 * pManchesterErr,
 ADT_L0_UINT32 * pParityErr)

This function reads the settings for a RT for errors on the status word. There are
three parameters that determine the error settings. These are syncErr,
manchesterErr, and parityErr. These parameters should be used in one of the
following ways: If syncErr, manchesterErr, and parityErr are all zero, no error will be
injected. If syncErr is non-zero, the sync pattern will be inverted. If manchesterErr is
non-zero, a manchester (zero-crossing) error will be injected on bit 3 of the word. If
parityErr is non-zero, the parity bit will be inverted. if both manchesterErr and
parityErr are non-zero, a manchester (zero-crossing) error will be injected on the
parity bit.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
pSyncErr is ptr to store sync error (1 for sync error or 0 for no sync error).
pManchesterErr is ptr to store manch error (1 for manch error or 0 for no manch error).
pParityErr ptr to store parity error (1 for parity error or 0 for no parity error).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

205

ADT_L1_1553_RT_SA_CDPAllocate
ADT_L0_UINT32 ADT_L1_1553_RT_SA_CDPAllocate (ADT_L0_UINT32 devID,

ADT_L0_UINT32 rtAddr,
ADT_L0_UINT32 tr,
ADT_L0_UINT32 subAddr,
ADT_L0_UINT32 numCDP)

This function allocates and links the requested number of CDPs for the RT/SA.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
numCDP is the requested number of CDP buffers.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, or numCDP
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_SA_CDPFree
ADT_L0_UINT32 ADT_L1_1553_RT_SA_CDPFree (ADT_L0_UINT32 devID,

 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 subAddr)

This function frees the RT SA Control Block and CDPs for the RT/SA and resets to
default buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, or numCDP
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

206

ADT_L1_1553_RT_SA_CDPRead
ADT_L0_UINT32 ADT_L1_1553_RT_SA_CDPRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 subAddr,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function reads a CDP for the RT/SA.

NOTE: If you read a CDP buffer while the firmware is in the middle of processing
a message for that buffer, then the CDP Status Word will be 0xFFFFFFFF. If
you see this value, then you should read the buffer again until the CDP Status
Word is NOT 0xFFFFFFFF – you will then have a complete CDP buffer. If you
use interrupts to synchronize buffer reads to messages on the bus then you
should not see this case.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
cdpNum is the index of the CDP to write.
pCdp is a pointer to the CDP structure to be read.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, or cdpNum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

207

ADT_L1_1553_RT_SA_CDPReadWords
ADT_L0_UINT32 ADT_L1_1553_RT_SA_CDPReadWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 subAddr,

ADT_L0_UINT32 cdpNum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function reads consecutive words from a CDP for the RT SA. The user must
reference a valid CDP wordOffset – see AltaCore manual or 1553 Quick Reference
for CDP structure. This function can save backplane cycles by reading only selected
words from an RT CDP.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
cdpNum is the CDP buffer number.
wordOffset is the word offset in to the CDP.
numOfWords is the number of words to read from the wordOffset of the CDP.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, cdpNum, wordOffset or

numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

208

ADT_L1_1553_RT_SA_CDPWrite
ADT_L0_UINT32 ADT_L1_1553_RT_SA_CDPWrite (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 subAddr,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function writes a CDP for the RT/SA.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
cdpNum is the index of the CDP to write.
pCdp is a pointer to the CDP structure to be written.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, or cdpNum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

209

ADT_L1_1553_RT_SA_CDPWriteWords
ADT_L0_UINT32 ADT_L1_1553_RT_SA_CDPWriteWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 tr,
 ADT_L0_UINT32 subAddr,

ADT_L0_UINT32 cdpNum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function writes consecutive words from a CDP for the RT SA. The user must
reference a valid CDP wordOffset – see AltaCore manual or 1553 Quick Reference
for CDP structure. This function can save backplane cycles by writing only selected
words from an RT CDP.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
cdpNum is the CDP buffer number.
wordOffset is the word offset in to the CDP.
numOfWords is the number of words to read from the wordOffset of the CDP.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, TR, subaddress, cdpNum, wordOffset or

numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

210

ADT_L1_1553_RT_SA_LegalizationRead
ADT_L0_UINT32 ADT_L1_1553_RT_SA_LegalizationRead

(ADT_L0_UINT32 devID,
ADT_L0_UINT32 rtAddr,
ADT_L0_UINT32 tr,
ADT_L0_UINT32 subAddr,
ADT_L0_UINT32 * pIllegalBits)

This function reads the legalization settings for the RT/SA.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
pIllegalBits is the pointer to store the value read.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, T/R, or subaddress
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

211

ADT_L1_1553_RT_SA_LegalizationWrite
ADT_L0_UINT32 ADT_L1_1553_RT_SA_LegalizationWrite

(ADT_L0_UINT32 devID,
ADT_L0_UINT32 rtAddr,
ADT_L0_UINT32 tr,
ADT_L0_UINT32 subAddr,
ADT_L0_UINT32 illegalBits)

This function writes the legalization settings for the RT/SA.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
tr is transmit(1) or receive(0).
subAddr is the subaddress.
illegalBits contains one bit for each word count, 0=legal, 1=illegal.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address, T/R, or subaddress
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

212

ADT_L1_1553_RT_SetOptions
ADT_L0_UINT32 ADT_L1_1553_RT_SetOptions (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 allowDBC,
 ADT_L0_UINT32 txInh_A,
 ADT_L0_UINT32 txInh_B,
 ADT_L0_UINT32 clrSRonTxVectorWd)

This function configures a RT CB for transmitter inhibits and mode code options.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
allowDBC set to 1 to ALLOW DYNAMIC BUS CONTROL or 0 to IGNORE DYNAMIC
BUS CONTROL.
txInh_A is set to 1 to INHIBIT BUS A or 0 to ENABLE BUS A.
txInh_B is set to 1 to INHIBIT BUS B or 0 to ENABLE BUS B.
clrSRonTxVectorWd is set to 1 to CLEAR SR BIT ON TX VECTOR WORD or 0 to NOT
CHANGE SR ON TX VECTOR WORD.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_SetRespTime
ADT_L0_UINT32 ADT_L1_1553_RT_SetRespTime (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 respTime100ns)

This function sets the Status Response time (100ns LSB) for the specified RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
respTime100ns is the response time (100ns LSB, max value allowed 4095 = 409.5us).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address or resp time
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

213

ADT_L1_1553_RT_SetSingleRTAddr
ADT_L0_UINT32 ADT_L1_1553_RT_SetSingleRTAddr

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr)

This function sets the single RT address for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address (0-31).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_Start
ADT_L0_UINT32 ADT_L1_1553_RT_Start (ADT_L0_UINT32 devID)

This function starts the RT function of the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

214

ADT_L1_1553_RT_StatusRead
ADT_L0_UINT32 ADT_L1_1553_RT_StatusRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 * pStsWord)

This function reads the Status word for the RT.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
pStsWord is the pointer to store the status word.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

ADT_L1_1553_RT_StatusWrite
ADT_L0_UINT32 ADT_L1_1553_RT_StatusWrite (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtAddr,
 ADT_L0_UINT32 stsWord)

This function writes the Status word for the RT. Note that you CANNOT change the
RT Address (bits 11-15) or the Message Error (ME) bit (bit 10). The ME bit is strictly
defined by the MIL-STD-1553 specification and is controlled by the Alta Protocol
Engine.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtAddr is the RT address.
stsWord is the status word.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid RT address
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

215

ADT_L1_1553_RT_Stop
ADT_L0_UINT32 ADT_L1_1553_RT_Stop (ADT_L0_UINT32 devID)

This function stops the RT function of the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

217

1553 Bus Controller Functions
This section describes the Layer 1 API 1553 Bus Controller functions. These
functions are defined in the file ADT_L1_1553_BC.c.

ADT_L1_1553_BC_AperiodicIsRunning
ADT_L0_UINT32 ADT_L1_1553_BC_AperiodicIsRunning

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 priority,
 ADT_L0_UINT32 * pIsRunning)

This function determines if the BC is processing aperiodic messages.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
priority is 0 for LOW priority or 1 for HIGH priority.
pIsRunning is a pointer to store the result, 0=NotRunning, 1=Running.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

218

ADT_L1_1553_BC_AperiodicSend
ADT_L0_UINT32 ADT_L1_1553_BC_AperiodicSend (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 priority,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 LPAMtime)

This function injects BC Aperiodic messages into a running frame.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
priority is 0 for LOW priority or 1 for HIGH priority.
msgnum is the message number for the aperiodic message to send.
LPAMtime is the low priority aperiodic message time (100ns LSB).
If this is ZERO, then the LPAM will be sent at end of frame no matter how much or little

time is remaining in the frame.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

219

ADT_L1_1553_BC_CB_CDPAllocate
ADT_L0_UINT32 ADT_L1_1553_BC_CB_CDPAllocate (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 numCDP)

This function allocates memory for a BC Control Block and allocates/links CDPs.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message number (zero-indexed) for which to allocate a BCCB.
numCDP is the number of CDPs to allocate and link for the BCCB.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_ERR_BCCB_ALREADY_ALLOCATED - A BCCB has already been allocated for

msgnum
ADT_FAILURE - Completed with error

ADT_L1_1553_BC_CB_CDPFree
ADT_L0_UINT32 ADT_L1_1553_BC_CB_CDPFree (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum)

This function frees memory for a BC Control Block and associated CDPs.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message number (zero-indexed) of the BCCB to free.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_ERR_BCCB_NOT_ALLOCATED - No BCCB has been allocated for msgnum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

220

ADT_L1_1553_BC_CB_CDPRead
ADT_L0_UINT32 ADT_L1_1553_BC_CB_CDPRead (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function reads a CDP for a BC Control Block.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message (BC CB) number.
cdpNum is the buffer (CDP) number.
pCdp is a pointer to the CDP structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_ERR_BCCB_NOT_ALLOCATED - No BCCB has been allocated for msgnum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

221

ADT_L1_1553_BC_CB_CDPReadWords
ADT_L0_UINT32 ADT_L1_1553_BC_CB_CDPReadWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 cdpNum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function reads consecutive words from a BCCB CDP. The user must reference
a valid CDP wordOffset – see AltaCore manual or 1553 Quick Reference for CDP
structure. This function can be useful to read only a small number of words verses
the whole CDP – this can save many backplane cycles.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message (BC CB) number.
cdpNum is the buffer (CDP) number.
wordOffset is the word offset in to the CDP.
numOfWords is the number of words to read from the wordOffset of the CDP.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT Invalid message number, cdpNum, wordOffset or numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

222

ADT_L1_1553_BC_CB_CDPWrite
ADT_L0_UINT32 ADT_L1_1553_BC_CB_CDPWrite (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 cdpNum,
 ADT_L1_1553_CDP * pCdp)

This function writes a CDP for BC Control Block.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message (BC CB) number.
cdpNum is the buffer (CDP) number.
pCdp is a pointer to the CDP structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_ERR_BCCB_NOT_ALLOCATED - No BCCB has been allocated for msgnum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

223

ADT_L1_1553_BC_CB_CDPWriteWords
ADT_L0_UINT32 ADT_L1_1553_BC_CB_CDPWriteWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 cdpNum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function writes consecutive words to BCCB CDP. The user must reference a
valid CDP wordOffset – see AltaCore manual or 1553 Quick Reference for CDP
structure. This function can be useful to write only a small number of words verses
the whole CDP – this can save many backplane cycles.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message (BC CB) number.
cdpNum is the buffer (CDP) number.
wordOffset is the word offset in to the CDP.
numOfWords is the number of words to read from the wordOffset of the CDP.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number, cdpNum, wordOffset or

numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

224

ADT_L1_1553_BC_CB_Read
ADT_L0_UINT32 ADT_L1_1553_BC_CB_Read (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L1_1553_BC_CB * bccb)

This function reads a BC Control Block.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message number (zero-indexed) of the BCCB to read.
bccb is a pointer to store the BCCB read.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_ERR_BCCB_NOT_ALLOCATED - No BCCB has been allocated for msgnum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

225

ADT_L1_1553_BC_CB_ReadWords
ADT_L0_UINT32 ADT_L1_1553_BC_CB_ReadWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function reads consecutive words from a BCCB. The user must reference a
valid BCCB wordOffset – see AltaCore-1553 manual or 1553 Quick Reference for
BCCB structure.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message (BC CB) number.
wordOffset is the word offset in to the BCCB.
numOfWords is the number of words to read from the wordOffset of the BCCB.
pWords is a pointer to the UINT32 array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT Invalid message number, wordOffset or numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

226

ADT_L1_1553_BC_CB_Write
ADT_L0_UINT32 ADT_L1_1553_BC_CB_Write (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L1_1553_BC_CB * bccb)

This function writes a BC Control Block.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message number (zero-indexed) of the BCCB to write.
bccb is a pointer to the BCCB to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_ERR_BCCB_NOT_ALLOCATED - No BCCB has been allocated for msgnum
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

227

ADT_L1_1553_BC_CB_WriteWords
ADT_L0_UINT32 ADT_L1_1553_BC_CB_WriteWords (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum,
 ADT_L0_UINT32 wordOffset,

ADT_L0_UINT32 numOfWords,
 ADT_L0_UINT32 *pWords)

This function writes consecutive words to BCCB. The user must reference a valid
BCCB wordOffset – see AltaCore-1553 manual or 1553 Quick Reference for BCCB
structure.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message (BC CB) number.
wordOffset is the word offset in to the BCCB.
numOfWords is the number of words to read from the wordOffset of the BCCB.
pWords is a pointer to the array of words.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number, wordOffset or numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

228

ADT_L1_1553_BC_CB_SetAddressBranchValues
ADT_L0_UINT32 ADT_L1_1553_BC_CB_SetAddressBranchvalues (

ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgNum,

ADT_L0_UINT32 srcMsgNum,
ADT_L0_UINT32 srcCdpNum,

 ADT_L0_UINT32 srcWordOffset,
ADT_L0_UINT32 maskValue,
ADT_L0_UINT32 compareValue,

 ADT_L0_UINT32 destMsgNum)

This function sets the registers for referenced BCCB msgNum for an “Address
Branch Only” function (the user must also have the appropriate BCCB CSR bit set).
The “Address Branch Only” function directs the PE look for a specific data value and
make a BC branch decision to another BCCB. This can be used to make IF-ELSE
decisions chains during any point in BCCB message execution. See BC18.c
example to see how possible code can be setup.

Example: Force PE to look for a value of 0x00005555 from CDP Data Word 1
(which is word offset 0x11 or byte offset 0x44 of a CDP) of BCCB 5, CDP 0. If true,
then jump to BCCB 10. The current BCCB message being defined is 6.
ADT_L1_1553_BC_CB_SetAddressBranchValue(DEVID, 6, 5, 0, 0x11, 0x0000FFFF, 0x00005555, 10);

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgNum is the message (BC CB) number where setup will occur (usually is the current
BCCB number begin defined in your code)
srcMsgNum is the BCCB number from which the data comparision will occur.
srcCdpNum is the CDP number of the srcMsgNum from which the data comparison will
occur.
srcWordOffset is the CDP word offset (from srcMsgNum and srcCdpNum) from which the
data comparison will occur.
maskValue is the 32-bit logical AND value for masking desired bits on the srcWordOffset.
compareValue is the data value expected after the maskValue is applied.
destMsgNum is the destination BCCB number that BC execution will jump to if there is a
positive value after the mask/compare operation.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number, wordOffset or numOfWords
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

229

ADT_L1_1553_BC_Close
ADT_L0_UINT32 ADT_L1_1553_BC_Close (ADT_L0_UINT32 devID)

This function frees all BC resources for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

230

ADT_L1_1553_BC_GetFrameCount
ADT_L0_UINT32 ADT_L1_1553_BC_GetFrameCount (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pFrameCount)

This function reads the BC total frame count.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pFrameCount is a pointer to store the frame count.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_BC_Init
ADT_L0_UINT32 ADT_L1_1553_BC_Init (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 max_num_msgs,

ADT_L0_UINT32 minors_per_major,
ADT_L0_UINT32 bcCsr)

This function initializes BC settings for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
max_num_msgs is the maximum number of BC control blocks to be used.
minors_per_major is the number of minor frames per major frame.
bcCsr is the initial value for the BC CSR.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid device number
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

231

ADT_L1_1553_BC_InjCmdWordError
ADT_L0_UINT32 ADT_L1_1553_BC_InjCmdWordError

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgNum,
 ADT_L0_UINT32 cmd1or2,
 ADT_L0_UINT32 syncErr,
 ADT_L0_UINT32 manchesterErr,
 ADT_L0_UINT32 parityErr)

This function configures a BC message for errors on the command word. There are
three parameters to select the error type to inject. These are syncErr,
manchesterErr, and parityErr. These parameters should be used in one of the
following ways: If syncErr, manchesterErr, and parityErr are all zero, no error will be
injected. If syncErr is non-zero, the sync pattern will be inverted. If manchesterErr is
non-zero, a manchester (zero-crossing) error will be injected on bit 3 of the word. If
parityErr is non-zero, the parity bit will be inverted. if both manchesterErr and
parityErr are non-zero, a manchester (zero-crossing) error will be injected on the
parity bit.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgNum is the message number.
cmd1or2 selects the CMD word (1 or 2).
syncErr set to 1 for sync error or 0 for no sync error.
manchesterErr set to 1 for manchester error or 0 for no manchester error.
parityErr set to 1 for parity error or 0 for no parity error.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

232

ADT_L1_1553_BC_IsRunning
ADT_L0_UINT32 ADT_L1_1553_BC_IsRunning (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsRunning)

This function determines if the BC is running or stopped.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIsRunning is a pointer to store the result, 0=Not Running, 1=Running.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

233

ADT_L1_1553_BC_ReadCmdWordError
ADT_L0_UINT32 ADT_L1_1553_BC_ReadCmdWordError

 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgNum,
 ADT_L0_UINT32 cmd1or2,
 ADT_L0_UINT32 * pSyncErr,
 ADT_L0_UINT32 * pManchesterErr,
 ADT_L0_UINT32 * pParityErr)

This function reads the settings for a BC message for errors on the command word.
There are three parameters that determine the error settings. These are syncErr,
manchesterErr, and parityErr. These parameters should be used in one of the
following ways: If syncErr, manchesterErr, and parityErr are all zero, no error will be
injected. If syncErr is non-zero, the sync pattern will be inverted. If manchesterErr is
non-zero, a manchester (zero-crossing) error will be injected on bit 3 of the word. If
parityErr is non-zero, the parity bit will be inverted. if both manchesterErr and
parityErr are non-zero, a manchester (zero-crossing) error will be injected on the
parity bit.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgNum is the message number.
cmd1or2 selects the CMD word (1 or 2).
pSyncErr is ptr to store sync error (1 for sync error or 0 for no sync error).
pManchesterErr is ptr to store manch error (1 for manch error or 0 for no manch error).
pParityErr ptr to store parity error (1 for parity error or 0 for no parity error).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

234

ADT_L1_1553_BC_Start
ADT_L0_UINT32 ADT_L1_1553_BC_Start (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 msgnum)

This function starts BC operation for the device on the selected message number.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
msgnum is the message number to start the BC on.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid message number
ADT_ERR_NO_BCCB_TABLE - BCCB table pointer is zero (table not allocated)
ADT_FAILURE - Completed with error

ADT_L1_1553_BC_Stop
ADT_L0_UINT32 ADT_L1_1553_BC_Stop (ADT_L0_UINT32 devID)

This function stops BC operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

235

1553 Signal Generator Functions
This section describes the Layer 1 API 1553 Signal Generator functions. These
functions are defined in the file ADT_L1_1553_SG.c.

ADT_L1_1553_SG_AddVectors
ADT_L0_UINT32 ADT_L1_1553_SG_AddVectors (ADT_L0_UINT32 numVec,
 ADT_L0_UINT32 vector2bit,

ADT_L0_UINT32 * pVectors,
ADT_L0_UINT32 sizeInWords,
ADT_L0_UINT32 * pNumVectors)

This function adds a sequence of vectors to a list of vectors.

Parameters:
numVec is the number of 2-bit vectors to add (1 vector = 20ns).
vector2bit is the 2-bit pattern to add for each vector (00=GND, 01=LOW, 10=HIGH,
11=GND).
pVectors is a pointer to the array of 32-bit words containing vectors.
sizeInWords is the max size (in words) of the vector array.
pNumVectors is a pointer to a UINT32 containing the current vector count (in bits).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_SG_Configure
ADT_L0_UINT32 ADT_L1_1553_SG_Configure (ADT_L0_UINT32 devID)

This function configures Signal Generator operation for the device by initializing the
SG registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

236

ADT_L1_1553_SG_CreateSGCB
ADT_L0_UINT32 ADT_L1_1553_SG_CreateSGCB (ADT_L0_UINT32 devID,

char bus,
ADT_L0_UINT32 timeHigh,
ADT_L0_UINT32 timeLow,
ADT_L0_UINT32 * pVectors,
ADT_L0_UINT32 numVectors)

This function allocates and writes a SGCB to the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
bus is the 1553 bus (A or B).
timeHigh is the upper 32 bits of the time for this SGCB.
timeLow is the lower 32 bits of the time for this SGCB.
pVectors is a pointer to an array of 32-bit words containing vectors.
numVectors is the number of vectors (in bits, may use only part of the last word).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_SG_Free
ADT_L0_UINT32 ADT_L1_1553_SG_Free (ADT_L0_UINT32 devID)

This function frees all SG CBs for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

237

ADT_L1_1553_SG_Start
ADT_L0_UINT32 ADT_L1_1553_SG_Start (ADT_L0_UINT32 devID)

This function starts Signal Generator operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_SG_Stop
ADT_L0_UINT32 ADT_L1_1553_SG_Stop (ADT_L0_UINT32 devID)

This function stops Signal Generator operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_SG_IsRunning
ADT_L0_UINT32 ADT_L1_1553_SG_IsRunning (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsRunning)

This function determines if the Signal Generator is running or stopped.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIsRunning is a pointer to store the result, 0=Not Running, 1=Running.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

238

ADT_L1_1553_SG_WordToVectors
ADT_L0_UINT32 ADT_L1_1553_SG_WordToVectors

(ADT_L0_UINT32 m1553word,
ADT_L0_UINT32 * pVectors,
ADT_L0_UINT32 sizeInWords,
ADT_L0_UINT32 * pNumVectors)

This function adds a 1553 word to a list of vectors.

Parameters:
m1553word is the 16-bit 1553 word (bit 31 is SYNC (1=cmd sync, 0 = data sync), bit 30 is
PARITY (1=parity error), bits 16-29 not used, set to zero).
pVectors is a pointer to the array of 32-bit words containing vectors.
sizeInWords is the max size (in words) of the vector array.
pNumVectors is a pointer to a UINT32 containing the current vector count (in 2-bit 20ns
vectors).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error - not enough words available in vectors array

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

239

1553 Playback Functions
This section describes the Layer 1 API 1553 Playback functions. These
functions are defined in the file ADT_L1_1553_PB.c.

Note that playback is intended for “normal” messages without protocol errors – it
is difficult to accurately playback messages with errors. Abnormal conditions,
like broadcast RTBC messages for example (things like this occur in AS4111 RT
validation testing), may be discarded as invalid CDP records and the message
will be skipped by playback. Messages with errors or abnormal conditions
may play back inaccurately or may be skipped altogether.

ADT_L1_1553_PB_Allocate
ADT_L0_UINT32 ADT_L1_1553_PB_Allocate (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numPkts)

This function allocates and links playback packets.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
numPkts is the number of playback packets to allocate.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of packets
ADT_FAILURE - Completed with error

ADT_L1_1553_PB_CDPWrite
ADT_L0_UINT32 ADT_L1_1553_PB_CDPWrite (ADT_L0_UINT32 devID,
 ADT_L1_1553_CDP * pCdp,
 ADT_L0_UINT32 options,
 ADT_L0_UINT32 isFirstMsg)

This function converts a CDP to a PB packet and writes it to the PB buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pCdp is a pointer to the CDP to write to the PB packet.
options are the packet control word options.
ADT_L1_1553_PBP_CONTROL_STOP 0x00000200
ADT_L1_1553_PBP_CONTROL_LED 0x00000100
ADT_L1_1553_PBP_CONTROL_TRGOUT 0x00000080

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

240

ADT_L1_1553_PBP_CONTROL_INT 0x00000040
ADT_L1_1553_API_PB_CDPWRITE_ATON 0x80000000

isFirstMsg is 1 for first message in playback or 0 for NOT first message. See the section
on “1553 Playback Operation” for details on playback functions and options.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BUFFER_FULL - PB buffer is full
ADT_ERR_BAD_INPUT - Invalid CDP
ADT_FAILURE - Completed with error

ADT_L1_1553_PB_Free
ADT_L0_UINT32 ADT_L1_1553_PB_Free (ADT_L0_UINT32 devID)

This function frees all playback packets for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_PB_GetRtResponse
ADT_L0_UINT32 ADT_L1_1553_PB_GetRtResponse (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pRtResp)

This function gets the playback RT response word.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pRtResp is the pointer to store the RT response word.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

241

ADT_L1_1553_PB_IsRunning
ADT_L0_UINT32 ADT_L1_1553_PB_IsRunning (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsRunning)

This function determines if playback is running or stopped.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIsRunning is a pointer to store the result, 0=NotRunning, 1=Running.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_PB_SetRtResponse
ADT_L0_UINT32 ADT_L1_1553_PB_SetRtResponse (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 rtResp)

This function sets the playback RT response word.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
rtResp is the RT response word - each bit corresponds to an RT, if set then playback
status word.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_1553_PB_Start
ADT_L0_UINT32 ADT_L1_1553_PB_Start (ADT_L0_UINT32 devID)

This function starts Playback operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

242

ADT_L1_1553_PB_Stop
ADT_L0_UINT32 ADT_L1_1553_PB_Stop (ADT_L0_UINT32 devID)

This function stops Playback operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

A429 General Functions
This section describes the Layer 1 API A429 General functions. These functions
are defined in the file ADT_L1_A429_General.c.

ADT_L1_A429_InitDefault
ADT_L0_UINT32 ADT_L1_A429_InitDefault (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries)

This function initializes an A429 device, allocates interrupt queue, and sets default
configuration for ARINC 429 protocol. This function calls ADT_L1_InitDevice and
ADT_L1_A429_InitDevice.

Also see the next function, ADT_L1_A429_InitDefault_ExtenedOptions. This
function provides more options for startup of the device channel for resets and
forcing API initialization, which may be useful for development and embedded
applications.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
numIQEntries is the number of interrupt queue entries to allocate.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_ERR_BITFAIL - Failed Built-In Test
ADT_ERR_DEVICEINUSE - Device in use (see explanation in the Layer 1 API

Operational Discussion under “Initializing and Closing the API”)
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

243

ADT_L1_A429_InitDefault_ExtendedOptions
ADT_L0_UINT32 ADT_L1_A429_InitDefault_ExtendedOptions

 (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries,

 ADT_L0_UINT32 startupOptions)

This function initializes an A429 device, allocates interrupt queue, and sets default
configuration for ARINC 429 protocol. This function calls ADT_L1_InitDevice and
ADT_L1_A429_InitDevice.

Additional startup options are provided to allow the user to specify to skip Force API
initialization (need for previous soft application crashes), skip Memory Test (for fast
startups), and perform a hard reset on the A429 bank (not the card – this clears all
channel protocol engine registers). The ADT_L1_API_DEVICEINIT_NOKP option
can be used to bypass loading the driver kernel plug-in but in most cases this option
should NOT be set.

This function may be preferred over ADT_L1_A429_InitDefault where the user
always wants the A429 bank to initialize regardless of previous application or
hardware states.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
numIQEntries is the number of interrupt queue entries to allocate.

 startupOptions are user selected startup options defined as follows:
#define ADT_L1_API_DEVICEINIT_FORCEINIT 0x00000001
#define ADT_L1_API_DEVICEINIT_NOMEMTEST 0x00000002
#define ADT_L1_API_DEVICEINIT_NOKP 0x00000004
#define ADT_L1_API_DEVICEINIT_ROOTPERESET 0x80000000

The ADT_L1_API_DEVICEINIT_NOKP option can be used to
bypass loading the driver kernel plug-in but in most cases this
option should NOT be set. This option only applies to platforms
that use the Jungo WinDriver software for the device driver
(Windows, Linux, Solaris). If this option is used then the application
cannot use hardware interrupts. The kernel plug-in is required for
hardware interrupts.

The ADT_L1_API_DEVICEINIT_FORCEINIT option should ONLY
be used in development and testing. This option is provided for
cases where the device may not have been closed properly and is
used to override the ADT_ERR_DEVICEINUSE error. This option
should NOT be used as the normal initialization method for your
application, because it bypasses protection against two applications
using the same device.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

244

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_ERR_BAD_CHAN_NUM - Bad channel number or channel does not exist
ADT_ERR_BITFAIL - Failed Built-In Test
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

245

ADT_L1_A429_InitDevice
ADT_L0_UINT32 ADT_L1_A429_InitDevice (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numIQEntries)

This function initializes an A429 device and allocates the interrupt queue.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
numIQEntries is the number of interrupt queue entries to allocate.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid number of IQ entries
ADT_ERR_BITFAIL - Failed Built-In Test
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

246

ADT_L1_A429_GetConfig
ADT_L0_UINT32 ADT_L1_A429_GetConfig (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 *pChanConfig)

This function gets the TX-RX channel configuration for an A429 device.

 This RX and TX configuration for the bank device of channels is located at Root
 PE Offset from ADT_L1.h:

 #define ADT_L1_A429_PE_TXRX_CHANCONFIG 0x000C

 Here is the Data Structure from the AltaCore ARINC manual:

Root PE Register 0x000C

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pChanConfig is the pointer for the TX-RX channel selection.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_GetPEInfo
ADT_L0_UINT32 ADT_L1_A429_GetPEInfo (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * peInfo)

This function gets A429 PE ID and Version information. Also See:
ADT_L1_GetVersionInfo().

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
peInfo is a pointer to store the PE ID and Version.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

247

ADT_L1_A429_TimeClear
ADT_L0_UINT32 ADT_L1_A429_TimeClear (ADT_L0_UINT32 devID)

This function clears the time tag value for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_UseExtClk
ADT_L0_UINT32 ADT_L1_A429_UseExtClk (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 useExtClk,
 ADT_L0_UINT32 clkFreq)

This function enables an A429 bank to use an external clock.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
useExtClk enables or disables external clock (1=enable, 0=disable).
clkFreq must be 1, 5, or 10 (1MHz, 5MHz, or 10MHz).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid value for clkFreq
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

248

ADT_L1_A429_TimeGet
ADT_L0_UINT32 ADT_L1_A429_TimeGet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pTimeHigh,
 ADT_L0_UINT32 * pTimeLow)

This function gets the time tag value for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pTimeHigh is a pointer to store the upper 32-bits of the 64-bit time tag value.
pTimeLow is a pointer to store the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_TimeSet
ADT_L0_UINT32 ADT_L1_A429_TimeSet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 timeHigh,
 ADT_L0_UINT32 timeLow)

This function sets the time tag value for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
timeHigh is the upper 32-bits of the 64-bit time tag value.
timeLow is the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

249

ADT_L1_A429_IrigLatchedTimeGet
ADT_L0_UINT32 ADT_L1_A429_IrigLatchedTimeGet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIrigTimeHigh, ADT_L0_UINT32 * pIrigTimeLow,
 ADT_L0_UINT32 * pIntTimeHigh, ADT_L0_UINT32 * pIntTimeLow,
 ADT_L0_UINT32 * pDeltaTimeHigh, ADT_L0_UINT32 * pDeltaTimeLow)

This function gets the latched IRIG and internal time value for the channel. These
values are latched by the firmware on every 1-second IRIG sync (if there is a good
lock to the IRIG signal). Use the ADT_L1_Global_CalibrateIrigDac function to
calibrate to the IRIG signal.

The latched IRIG time is in IRIG BCD format, as shown below:

IRIG Time Low – 0x000000CC
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Seconds

0

 BCD MinutesBCD Hours

IRIG Time High– 0x000000C8
3 2 149 8 56710111213141516171819202122232425262728293031

Reserved BCD Days

0

 BCD Years

NOTE:
IRIG Standard 200-98 – The IRIG-B time code does not include years.
IRIG Standard 200-04 – The IRIG-B time code can include years.

The latched internal time is in 64-bit binary format (not BCD), with a 20ns LSB. The
delta time is the difference between the IRIG time (converted from BCD to binary)
and the internal time. Add the delta time to internal time values (like the time stamp
on a RXP) to convert them to binary IRIG time.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
pIrigTimeHigh is a pointer to store the upper 32-bits of the 64-bit IRIG BCD time
(latched).
pIrigTimeLow is a pointer to store the lower 32-bits of the 64-bit IRIG BCD time (latched).
pIntTimeHigh is a pointer to store the upper 32-bits of the 64-bit internal time (latched).
pIntTimeLow is a pointer to store the lower 32-bits of the 64-bit internal time (latched).
pDeltaTimeHigh is a pointer to store the upper 32-bits of the 64-bit delta time.
pDeltaTimeLow is a pointer to store the lower 32-bits of the 64-bit delta time.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

250

ADT_L1_A429_PBTimeGet
ADT_L0_UINT32 ADT_L1_A429_PBTimeGet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pTimeHigh,
 ADT_L0_UINT32 * pTimeLow)

This function gets the Playback time tag value for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pTimeHigh is a pointer to store the upper 32-bits of the 64-bit time tag value.
pTimeLow is a pointer to store the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_TIMEOUT - Timeout waiting for CSR bit to clear
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_PBTimeSet
ADT_L0_UINT32 ADT_L1_A429_PBTimeSet (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 timeHigh,
 ADT_L0_UINT32 timeLow)

This function sets the Playback time tag value for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
timeHigh is the upper 32-bits of the 64-bit time tag value.
timeLow is the lower 32-bits of the 64-bit time tag value.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

251

ADT_L1_A429_SC_ArmTrigger
ADT_L0_UINT32 ADT_L1_A429_SC_ArmTrigger (ADT_L0_UINT32 devID,

ADT_L0_UINT32 rxChan)

This function arms the Signal Capture for a trigger.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
rxChan identifies which receive channel to use (zero for channel 1, non-zero for channel
2).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_SC_ReadBuffer
ADT_L0_UINT32 ADT_L1_A429_SC_ReadBuffer (ADT_L0_UINT32 devID,

ADT_L0_UINT32 rxChan,
ADT_L0_UINT8 *buffer)

This function reads the Signal Capture data buffer for the specified receive channel.
This reads 4096 unsigned 8-bit values.
Each value represents a voltage where 0 is -11.264 volts and 255 is +11.264 volts.
Therefore the voltage range is 22.528 volts over 256 possible values, or 0.08835
volts per LSB.
Each of the 4096 values represents a time period of 1 microsecond. Therefore the
entire buffer represents 4096 microseconds of time.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
rxChan identifies which receive channel to use (zero for channel 1, non-zero for channel
2).
buffer is an array of 4096 unsigned 8-bit values.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

252

ADT_L1_A429_IntervalTimerGet
ADT_L0_UINT32 ADT_L1_A429_IntervalTimerGet(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 *pIntvlTmrReg);

This function retrieves the Root PE Interval Timer Register. The register is
comprised of 24 MSB, 1 usec time value and 5 control and status bits in the 8
LSB. The following provides the ADT_L1.h definitions:

#define ADT_L1_A429_PE_INTVLTMR 0x004C
#define ADT_L1_A429_PE_INTVLTMR_STARTSTOP 0x00000001
#define ADT_L1_A429_PE_INTVLTMR_STARTONTRIG 0x00000002
#define ADT_L1_A429_PE_INTVLTMR_EXTTRIG 0x00000008
#define ADT_L1_A429_PE_INTVLTMR_SETINT 0x00000010
#define ADT_L1_A429_PE_INTVLTMR_TIMECOMP 0x00000080
#define ADT_L1_A429_PE_INTVLTMR_TIME24 0xFFFFFF00
#define ADT_L1_A429_PE_INTVLTMR_TIMESHIFT 8

Also see the AltaCore-A429 manual for more detail definitions and actions of the
register bits.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pIntrvlTmrReg is the pointer to the register value result.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

253

ADT_L1_A429_IntervalTimerSet
ADT_L0_UINT32 ADT_L1_A429_IntervalTimerGet(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 intvlTmrReg);

This function writes a user value to the Root PE Interval Timer Register. The
register is comprised of 24 MSB, 1 usec time value and 5 control and status bits
in the 8 LSB. The following provides the ADT_L1.h definitions:

#define ADT_L1_A429_PE_INTVLTMR 0x004C
#define ADT_L1_A429_PE_INTVLTMR_STARTSTOP 0x00000001
#define ADT_L1_A429_PE_INTVLTMR_STARTONTRIG 0x00000002
#define ADT_L1_A429_PE_INTVLTMR_EXTTRIG 0x00000008
#define ADT_L1_A429_PE_INTVLTMR_SETINT 0x00000010
#define ADT_L1_A429_PE_INTVLTMR_TIMECOMP 0x00000080
#define ADT_L1_A429_PE_INTVLTMR_TIME24 0xFFFFFF00
#define ADT_L1_A429_PE_INTVLTMR_TIMESHIFT 8

Also see the AltaCore-A429 manual for more detail definitions and actions of the
register bits.

Parameters:

devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
intrvlTmrReg is the user value to write to the Interval Register.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

254

A429 Interrupt Functions
This section describes the Layer 1 API A429 Interrupt functions. These functions
are defined in the file ADT_L1_A429_INT.c.

ADT_L1_A429_INT_CheckChannelIntPending
ADT_L0_UINT32 ADT_L1_A429_INT_CheckChannelIntPending

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsIntPending)

This function checks to see if an interrupt is pending for a given A429 device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pIsIntPending is a pointer to store the result (0 = no int pending, 1 = int pending).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_INT_DisableInt
ADT_L0_UINT32 ADT_L1_A429_INT_DisableInt (ADT_L0_UINT32 devID)

This function disables interrupts for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

255

ADT_L1_A429_INT_EnableInt
ADT_L0_UINT32 ADT_L1_A429_INT_EnableInt (ADT_L0_UINT32 devID)

This function enables interrupts for the channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_INT_GetIntSeqNum
ADT_L0_UINT32 ADT_L1_A429_INT_GetIntSeqNum (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pSeqNum)

This function reads the interrupt sequence number for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pSeqNum is the pointer to store the sequence number.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

256

ADT_L1_A429_INT_IQ_ReadEntry
ADT_L0_UINT32 ADT_L1_A429_INT_IQ_ReadEntry (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pType,
 ADT_L0_UINT32 * pInfo)

This function reads one new entry from the interrupt queue.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “A429 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pType is the pointer to store the interrupt type word.
pInfo is the pointer to store the interrupt info word.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error
ADT_ERR_IQ_NO_NEW_ENTRY - No new entry in the queue

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

257

ADT_L1_A429_INT_IQ_ReadNewEntries
ADT_L0_UINT32 ADT_L1_A429_INT_IQ_ReadNewEntries

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 MaxNumEntries,
 ADT_L0_UINT32 * pNumEntries,
 ADT_L0_UINT32 * pType,
 ADT_L0_UINT32 * pInfo)

This function reads all new entries from the interrupt queue.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “A429 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
maxNumEntries is the maximum number of entries to read (size of buffer).
pNumEntries is the pointer to store the number of messages read.
pType is the pointer to store the interrupt type words (array sized by maxNumEntries).
pInfo is the pointer to store the interrupt info words (array sized by maxNumEntries).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

258

ADT_L1_A429_INT_IQ_ReadRawEntry
ADT_L0_UINT32 ADT_L1_A429_INT_IQ_ReadEntry (ADT_L0_UINT32 devID,
 ADT_L1_A429_INT *intbuffer)

This function reads one new raw entry from the interrupt queue. ADT_L1_
A429_INT has the following structure:

typedef struct adt_l1_ a429_int {
 ADT_L0_UINT32 NextPtr;
 ADT_L0_UINT32 Type_SeqNum;
 ADT_L0_UINT32 IntData;
} ADT_L1_ A429_INT;

NextPtr contains a pointer to the next interrupt queue entry. Type_SeqNum is the
“IQP Type and Sequence Number” word from the Interrupt Queue Packet, where the
upper 16-bits provide the interrupt type and the lower 16-bits provide a sequence
number. IntData is a pointer to the data structre that cause the intterupt.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “A429 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
int_buffer is the pointer to the ADT_L1_ A429_INT data buffer type where the interrupt
info is stored.

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error
ADT_ERR_IQ_NO_NEW_ENTRY - No new entry in the queue

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

259

ADT_L1_A429_INT_IQ_ReadNewRawEntries
ADT_L0_UINT32 ADT_L1_ A429_INT_IQ_ReadNewEntries

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 MaxNumEntries,
 ADT_L0_UINT32 * pNumEntries,
 ADT_L1_A429_INT *intbuffer)

This function reads all new entries from the interrupt queue into an array of type
ADT_L1_ A429_INT. ADT_L1_ A429_INT has the following structure:

typedef struct adt_l1_a429_int {
 ADT_L0_UINT32 NextPtr;
 ADT_L0_UINT32 Type_SeqNum;
 ADT_L0_UINT32 IntData;
} ADT_L1_A429_INT;

NextPtr contains a pointer to the next interrupt queue entry. Type_SeqNum is the
“IQP Type and Sequence Number” word from the Interrupt Queue Packet, where the
upper 16-bits provide the interrupt type and the lower 16-bits provide a sequence
number. IntData is a pointer to the data structre that cause the intterupt.

For more information on interrupt queue entries refer to the “Layer 1 API Operational
Discussion” section, under “Interrupt Operation” in the section for “A429 Device
Interrupt Functions”.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
maxNumEntries is the maximum number of entries to read (size of buffer).
pNumEntries is the pointer to store the number of messages read.
intbuffer is the pointer to store the raw interrupt data array (array sized by
maxNumEntries).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

260

ADT_L1_A429_INT_SetIntSeqNum
ADT_L0_UINT32 ADT_L1_A429_INT_SetIntSeqNum (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 seqNum)

This function writes the interrupt sequence number for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
seqNum is the sequence number to write.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

261

A429 Multichannel Receive Functions
This section describes the Layer 1 API A429 Multichannel Receive functions.
These functions are defined in the file ADT_L1_A429_RX_MC.c.

ADT_L1_A429_RXMC_BufferCreate
ADT_L0_UINT32 ADT_L1_A429_RXMC_BufferCreate (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 numRxP)

This function allocates the requested number of RxPs for the multichannel receive
buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
numRxP is the number of RxP buffers requested.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_BAD_INPUT - Invalid number of RxP
ADT_FAILURE - Completed with error

ADT_L1_A429_RXMC_BufferFree
ADT_L0_UINT32 ADT_L1_A429_RXMC_BufferFree (ADT_L0_UINT32 devID)

This function frees all board memory used for the multichannel receive buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

262

ADT_L1_ A429_RXMC_ReadNewRxPs
ADT_L0_UINT32 ADT_L1_A429_RXMC_ReadNewRxPs

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 maxNumRxPs,
 ADT_L0_UINT32 * pNumRxPs,
 ADT_L1_A429_RXP * pRxPBuffer)

This function reads all new RxPs from the multichannel RxP buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
maxNumRxPs is the maximum number of RxPs to read (size of buffer).
pNumRxPs is the pointer to store the number of RxPs read.
pRxPBuffer is the pointer to store the RxP records.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_ A429_RXMC_ReadRxP
ADT_L0_UINT32 ADT_L1_A429_RXMC_ReadRxP

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 RxP_index,
 ADT_L1_A429_RXP * pRxP)

This function reads a specific RxP from the multichannel RxP buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxP_index is the index of the RxP to read.
pRxP is the pointer to store the RxP record.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

263

ADT_L1_ A429_RXMC_WriteRxP
ADT_L0_UINT32 ADT_L1_A429_RXMC_WriteRxP

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 RxP_index,
 ADT_L1_A429_RXP * pRxP)

This function writes a specific RxP to the multichannel RxP buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxP_index is the index of the RxP to write.
pRxP is the pointer to the RxP to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - invalid pointer
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

264

A429 Receive Functions
This section describes the Layer 1 API A429 Receive functions. These functions
are defined in the file ADT_L1_A429_RX.c.

ADT_L1_A429_RX_Channel_Init
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_Init (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 RxChanNum,

ADT_L0_UINT32 BitRateHz,
ADT_L0_UINT32 numRxP,
ADT_L0_UINT32 includeInMcRx)

This function initializes data structures for the specified receive channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
BitRateHz is the bit rate in Hz (500-500000).
numRxP is the number of receive packets to allocate for the channel.
includeInMcRx indicates whether or not to include this channel in the multichannel
receive buffer. If this value is non-zero, then this channel is included in the MCRX buffer.
If this value is zero, then this channel is not included in the MCRX buffer.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number or invalid bit rate
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

265

ADT_L1_A429_RX_Channel_Close
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_Close (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 RxChanNum)

This function clears data structures and frees memory used by the specified receive
channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
RxChanNum is the receive channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_RX_Channel_Start
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_Start (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 RxChanNum)

This function starts receive operation for the specified receive channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

266

ADT_L1_A429_RX_Channel_Stop
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_Stop (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 RxChanNum)

This function stops receive operation for the specified receive channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_RX_Channel_ReadNewRxPs
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_ReadNewRxPs (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 maxNumRxPs,
ADT_L0_UINT32 *pNumRxPs,

 ADT_L1_A429_RXP *pRxPBuffer)

This function reads all new receive packets for the specified receive channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Channel
#).
RxChanNum is the receive channel number (0-15).
maxNumRxPs is the maximum number of receive packets to read (size of RxP buffer).
pNumRxPs is the pointer to store the number of receive packets read.
pRxPBuffer is the pointer to the array of receive packets.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_BAD_CHAN_NUM – The RX channel has not been initialized
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

267

ADT_L1_A429_RX_Channel_ReadRxP
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_ReadRxP (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 RxP_index,

 ADT_L1_A429_RXP *pRxP)

This function reads a specific receive packet for the specified receive channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
RxP_index is the index (0-N) of the receive packet to read.
pRxP is the pointer to store the receive packet.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_BAD_CHAN_NUM – The RX channel has not been initialized
ADT_FAILURE - Completed with error

ADT_L1_A429_RX_Channel_WriteRxP
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_WriteRxP (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 RxP_index,

 ADT_L1_A429_RXP *pRxP)

This function writes a specific receive packet to the specified receive channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
RxP_index is the index (0-N) of the receive packet to write.
pRxP is the pointer to the receive packet to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_BAD_CHAN_NUM – The RX channel has not been initialized
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

268

ADT_L1_A429_RX_Channel_CVTReadRxP
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_ReadRxP (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 labelIndex,

 ADT_L1_A429_RXP *pRxP)
This function reads a specific receive packet for the specified receive channel in the
Current Value Table that is label indexed. The user will need to reverse the
labelIndex number prior to making this call.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
labelIndex is the raw (MSB first) label number (first 8 bits) of the word/label.
pRxP is the pointer to store the receive packet.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_RX_Channel_CVTWriteRxP
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_WriteRxP (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 labelIndex,

 ADT_L1_A429_RXP *pRxP)
This function writes a specific receive packet to the specified receive channel
channel in the Current Value Table that is label indexed.. The user will need to
reverse the labelIndex number prior to making this call.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
labelIndex is the raw (MSB first) label number (first 8 bits) of the word/label.
pRxP is the pointer to the receive packet to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

269

ADT_L1_A429_RX_Channel_SetConfig
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_SetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 Setup1,

 ADT_L0_UINT32 Setup2)

This function sets the protocol settings for the specified receive channel. This
function writes values to the Setup1 and Setup2 registers in the receive channel root
registers. Refer to the A429 Protocol Engine manual for details on these registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
Setup1 is the value for the receive channel Setup1 register (see PE manual).
Setup2 is the value for the receive channel Setup2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

270

ADT_L1_A429_RX_Channel_GetConfig
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_GetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 *pSetup1,

 ADT_L0_UINT32 *pSetup2)

This function gets the protocol settings for the specified receive channel. This
function reads values from the Setup1 and Setup2 registers in the receive channel
root registers. Refer to the A429 Protocol Engine manual for details on these
registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
pSetup1 is the pointer for the receive channel Setup1 register (see PE manual).
pSetup2 is the pointer for the receive channel Setup2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

271

ADT_L1_A429_RX_Channel_SetMaskCompare
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_SetMaskCompare (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 mask1,

 ADT_L0_UINT32 compare1,
ADT_L0_UINT32 mask2,

 ADT_L0_UINT32 compare2)

This function sets the mask/compare interrupt settings for the specified receive
channel. This function writes values to the Mask1, Compare1, Mask2, and
Compare2 registers in the receive channel root registers. Every time the channel
receives a label, it ANDs the value with the Mask value then compares to the
Compare value – if the two are equal then an interrupt (and interrupt queue entry) is
generated. There are two sets of Mask/Compare registers to allow the user to
interrupt on two different conditions for the same receive channel. Refer to the A429
Protocol Engine manual for details on these registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
mask1 is the value for the receive channel Mask1 register (see PE manual).
compare1 is the value for the receive channel Compare1 register (see PE manual).
mask2 is the value for the receive channel Mask2 register (see PE manual).
compare2 is the value for the receive channel Compare2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

272

ADT_L1_A429_RX_Channel_GetMaskCompare
ADT_L0_UINT32 ADT_L1_A429_RX_Channel_GetMaskCompare (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 *pMask1,

 ADT_L0_UINT32 *pCompare1,
ADT_L0_UINT32 *pMask2,

 ADT_L0_UINT32 *pCompare2)

This function gets the mask/compare interrupt settings for the specified receive
channel. This function reads values from the Mask1, Compare1, Mask2, and
Compare2 registers in the receive channel root registers. Every time the channel
receives a label, it ANDs the value with the Mask value then compares to the
Compare value – if the two are equal then an interrupt (and interrupt queue entry) is
generated. There are two sets of Mask/Compare registers to allow the user to
interrupt on two different conditions for the same receive channel. Refer to the A429
Protocol Engine manual for details on these registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the receive channel number (0-15).
pMask1 is the pointer for the receive channel Mask1 register (see PE manual).
pCompare1 is the pointer for the receive channel Compare1 register (see PE manual).
pMask2 is the pointer for the receive channel Mask2 register (see PE manual).
pCompare2 is the pointer for the receive channel Compare2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

273

ADT_L1_A717_RX_Channel_SetConfig
ADT_L0_UINT32 ADT_L1_A717_RX_Channel_SetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 Csr,
ADT_L0_UINT32 Sync1,
ADT_L0_UINT32 Sync2,
ADT_L0_UINT32 Sync3,
ADT_L0_UINT32 Sync4)

This function sets the protocol settings for the specified receive channel. This
function writes values to the 4 SubFrame registers in the receive channel root
registers. Refer to the A429 Protocol Engine manual for details on these registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the RX Channel number (0-15).
Csr is the value for the A717 CSR register.
Sync1 is the value for the A717 SubFrame #1 Sync Word register.
Sync2 is the value for the A717 SubFrame #2 Sync Word register.
Sync3 is the value for the A717 SubFrame #3 Sync Word register.
Sync4 is the value for the A717 SubFrame #4 Sync Word register.

Returns:
• ADT_SUCCESS - Completed without error
• ADT_ERR_BAD_INPUT - Invalid Rx Channel number
• ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
• ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

274

ADT_L1_A717_RX_Channel_GetConfig
ADT_L0_UINT32 ADT_L1_A717_RX_Channel_SetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 RxChanNum,
ADT_L0_UINT32 pCsr,
ADT_L0_UINT32 pSync1,
ADT_L0_UINT32 pSync2,
ADT_L0_UINT32 pSync3,
ADT_L0_UINT32 pSync4)

This function gets the protocol settings for the specified receive channel. This
function reads values from the SubFrame Sync Word registers in the receive channel
root registers. Refer to the A429 Protocol Engine manual for details on these
registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
RxChanNum is the RX Channel number (0-15).
pCsr is the value for the A717 CSR register.
pSync1 is the pointer to the A717 SubFrame #1 Sync Word register.
pSync2 is the pointer to the A717 SubFrame #2 Sync Word register.
pSync3 is the pointer to the A717 SubFrame #3 Sync Word register.
pSync4 is the pointer to the A717 SubFrame #4 Sync Word register.

Returns:
• ADT_SUCCESS - Completed without error
• ADT_ERR_BAD_INPUT - Invalid Rx Channel number
• ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
• ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

275

A429 Transmit Functions
This section describes the Layer 1 API A429 Transmit functions. These
functions are defined in the file ADT_L1_A429_TX.c.

ADT_L1_A429_TX_Channel_Init
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_Init (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 TxChanNum,

ADT_L0_UINT32 BitRateHz,
ADT_L0_UINT32 numTXCB)

This function initializes data structures for the specified transmit channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
BitRateHz is the bit rate in Hz (500-500000).
numTXCB is the number of Transmit Control Blocks to allocate for the channel.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number or invalid bit rate
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

276

ADT_L1_A429_TX_Channel_Close
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_Close (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 TxChanNum)

This function clears data structures and frees memory used by the specified transmit
channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_TX_Channel_CB_TXPAllocate
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_CB_TXPAllocate (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,

 ADT_L0_UINT32 numTXP)

This function allocates memory for a transmit control block (TXCB) and its
associated transmit packets (TXPs).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index) for which to allocate transmit packets.
numTXP is the number of transmit packets to allocate for the TXCB.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_ALREADY_ALLOCATED - TXCB has already been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

277

ADT_L1_A429_TX_Channel_CB_TXPFree
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_CB_TXPFree (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum)

This function frees memory for a transmit control block (TXCB) and its associated
transmit packets (TXPs).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index) for which to allocate transmit packets.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

278

ADT_L1_A429_TX_Channel_CB_Write
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_CB_Write (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L1_A429_TXCB *txcb)

This function writes a transmit control block for the specified channel. This function
only writes the following parts of the TX CB:
 Next TX CB number
 Control Word
 TX Period

If you need to change the total number of TXPs for the TXCB refer to the example
program ADT_L1_A429_ex_tx7.c to see how to do this.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
txcb is the pointer to the transmit control block structure to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

279

ADT_L1_A429_TX_Channel_CB_Read
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_CB_Read (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L1_A429_TXCB *txcb)

This function reads a transmit control block for the specified channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
txcb is the pointer to the transmit control block structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

280

ADT_L1_A429_TX_Channel_CB_TXPWrite
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_CB_TXPWrite (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L0_UINT32 txpNum,
ADT_L1_A429_TXP *pTxp)

This function writes a transmit packet (TXP) for the specified transmit control block.
Only the LSB 6-bits (0-5) of the TXP Control Word, 32-bit Pre-TX Delay and 32-bit
Data Word values are written. This function does not overwrite the TXP Reserved
API Info Word.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
txpNum is the transmit packet number (TXP index).
pTxp is the pointer to the transmit packet structure to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

281

ADT_L1_A429_TX_Channel_CB_TXPRead
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_CB_TXPRead (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L0_UINT32 txpNum,
ADT_L1_A429_TXP *pTxp)

This function reads a transmit packet for the specified transmit control block.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
txpNum is the transmit packet number (TXP index).
pTxp is the pointer to the transmit packet structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

282

ADT_L1_A429_TX_Channel_Start
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_Start (ADT_L0_UINT32 devID,

ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum)

This function starts transmit operation for the specified transmit channel with the
specified message number (TXCB index).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_TX_Channel_Stop
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_Stop (ADT_L0_UINT32 devID,

ADT_L0_UINT32 TxChanNum)

This function stops transmit operation for the specified transmit channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

283

ADT_L1_A429_TX_Channel_IsRunning
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_IsRunning (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 *pIsRunning)

This function determines if the specified transmit channel is running.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
pIsRunning is the pointer to store the “is running state”, where zero indicates not running
and non-zero indicates running.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

284

ADT_L1_A429_TX_Channel_AperiodicIsRunning
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_AperiodicIsRunning (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 *pIsRunning)

This function determines if the specified transmit channel has an Aperiodic TXCB-
TXP list posted for execution. This user should call this routine prior to posting an
Aperiodic TXCB, and should not call the
ADT_L1_A429_TX_Channel_AperiodicSend() function unless the parameter
pIsRunning is zero. There are example programs that show how to use this function.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
pIsRunning is the pointer to store the “is running state”, where zero indicates not running
and non-zero indicates running.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

285

ADT_L1_A429_TX_Channel_SendLabel
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_SendLabel (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 Label)

This function sends a Label (as aperiodic or one-shot). THIS FUNCTION DOES
NOT RETURN UNTIL THE LABEL HAS BEEN SENT AND IT IS SAFE TO SEND
ANOTHER LABEL ON THE CHANNEL.
THIS FUNCTION IS NOT THREAD SAFE BECAUSE IT ALLOCATES AND FREES
MEMORY ON THE DEVICE. Do not use multiple threads to call this function for
multiple TX channels on the same device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
Label is the 32-bit A429 Label word to send.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_TIMEOUT - Timeout waiting for APERIODIC TXP register to clear
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

286

ADT_L1_A429_TX_Channel_SendLabelBlock
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_SendLabelBlock (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 numLabels,
ADT_L0_UINT32 pLabels)

This function sends a block of Labels (as aperiodic or one-shot). THIS FUNCTION
DOES NOT RETURN UNTIL THE LABELS HAVE BEEN SENT AND IT IS SAFE TO
SEND ANOTHER BLOCK OF LABELS ON THE CHANNEL.
THIS FUNCTION IS NOT THREAD SAFE BECAUSE IT ALLOCATES AND FREES
MEMORY ON THE DEVICE. Do not use multiple threads to call this function for
multiple TX channels on the same device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
numLabels is the number of 32-bit A429 Label words to send (maximum 1000).
pLabels is a pointer to the 32-bit A429 Label words to send.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number, invalid number of labels, or null

pointer
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_TIMEOUT - Timeout waiting for APERIODIC TXP register to clear
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

287

ADT_L1_A429_TX_Channel_AperiodicSend
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_AperiodicSend (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum)

This function posts a single TXCB (with one or more TXPs) for execution. If there
are TXCBs being processed, then the current TXCB will complete and then this
posted TXCB will execute. You should call the
ADT_L1_A429_TX_Channel_AperiodicIsRunning prior to calling this function to
verify that a previously posted Aperiodic is not executing. This function will overwrite
any current posted Aperiodic TXCB and unknown results could occur if the you do
not ensure a current Aperiodic is not running. There are example programs that
show how to use this function.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the TXCB number to send.

Returns:
ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_ERR_TIMEOUT - Timeout waiting for APERIODIC TXP register to clear
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

288

ADT_L1_A429_TX_Channel_SetConfig
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_SetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 CSR1,

 ADT_L0_UINT32 CSR2)

This function sets the protocol settings for the specified transmit channel. This
function writes values to the CSR1 and CSR2 registers in the transmit channel root
registers. Refer to the A429 Protocol Engine manual for details on these registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
CSR1 is the value for the transmit channel CSR1 register (see PE manual).
CSR2 is the value for the transmit channel CSR2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

289

ADT_L1_A429_TX_Channel_GetConfig
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_GetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 *pCSR1,

 ADT_L0_UINT32 *pCSR2)

This function gets the protocol settings for the specified transmit channel. This
function reads values from the CSR1 and CSR2 registers in the transmit channel
root registers. Refer to the A429 Protocol Engine manual for details on these
registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
pCSR1 is the pointer for the transmit channel CSR1 register (see PE manual).
pCSR2 is the pointer for the transmit channel CSR2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

290

ADT_L1_A429_TX_ChannelGetTxpCount
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_GetTxpCount (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 *txpCnt)

This function returns the txp count for an A429 Transmit Channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
txpCnt is the pointer for the transmit channel txp count.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

291

A429 Signal Generator Functions
This section describes the Layer 1 API A429 Signal Generator functions. These
functions are defined in the file ADT_L1_A429_SG.c.

ADT_L1_A429_SG_AddVectors
ADT_L0_UINT32 ADT_L1_A429_SG_AddVectors (ADT_L0_UINT32 numVec,
 ADT_L0_UINT32 vector2bit,

ADT_L0_UINT32 * pVectors,
ADT_L0_UINT32 sizeInWords,
ADT_L0_UINT32 * pNumVectors)

This function adds a sequence of vectors to a list of vectors.

Parameters:
numVec is the number of 2-bit vectors to add (1 vector = 100ns).
vector2bit is the 2-bit pattern to add for each vector (00=GND, 01=LOW, 10=HIGH,
11=GND).
pVectors is a pointer to the array of 32-bit words containing vectors.
sizeInWords is the max size (in words) of the vector array.
pNumVectors is a pointer to a UINT32 containing the current vector count (in bits).

Returns:

ADT_SUCCESS - Completed without error
ADT_FAILURE - Completed with error

ADT_L1_A429_SG_Configure
ADT_L0_UINT32 ADT_L1_A429_SG_Configure (ADT_L0_UINT32 devID,

ADT_L0_UINT32 txChannel,
ADT_L0_UINT32 slewRate)

This function configures Signal Generator operation for the device by initializing the
SG registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
txChannel is the TX channel (0-15) to use for the signal generator.
slewRate selects low-speed (0) or high-speed (1) slew rate for the transmit channel.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

292

ADT_L1_A429_SG_CreateSGCB
ADT_L0_UINT32 ADT_L1_A429_SG_CreateSGCB (ADT_L0_UINT32 devID,

ADT_L0_UINT32 timeHigh,
ADT_L0_UINT32 timeLow,
ADT_L0_UINT32 * pVectors,
ADT_L0_UINT32 numVectors)

This function allocates and writes a SGCB to the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
timeHigh is the upper 32 bits of the time for this SGCB.
timeLow is the lower 32 bits of the time for this SGCB.
pVectors is a pointer to an array of 32-bit words containing vectors.
numVectors is the number of vectors (in bits, may use only part of the last word).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_SG_Free
ADT_L0_UINT32 ADT_L1_A429_SG_Free (ADT_L0_UINT32 devID)

This function frees all SG CBs for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

293

ADT_L1_A429_SG_Start
ADT_L0_UINT32 ADT_L1_A429_SG_Start (ADT_L0_UINT32 devID)

This function starts Signal Generator operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_SG_Stop
ADT_L0_UINT32 ADT_L1_A429_SG_Stop (ADT_L0_UINT32 devID)

This function stops Signal Generator operation for the device.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_SG_IsRunning
ADT_L0_UINT32 ADT_L1_A429_SG_IsRunning (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 * pIsRunning)

This function determines if the Signal Generator is running or stopped.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
pIsRunning is a pointer to store the result, 0=Not Running, 1=Running.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

294

ADT_L1_A429_SG_WordToVectors
ADT_L0_UINT32 ADT_L1_A429_SG_WordToVectors

(ADT_L0_UINT32 a429word,
ADT_L0_UINT32 halfBitTime100ns,
ADT_L0_UINT32 * pVectors,
ADT_L0_UINT32 sizeInWords,
ADT_L0_UINT32 * pNumVectors)

This function adds an A429 word to a list of vectors.

Parameters:
A429word is the 32-bit A429 word.
halfBitTime100ns is the half-bit time (100ns LSB).
pVectors is a pointer to the array of 32-bit words containing vectors.
sizeInWords is the max size (in words) of the vector array.
pNumVectors is a pointer to a UINT32 containing the current vector count (in 2-bit 20ns
vectors).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error - not enough words available in vectors array

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

295

A429 Playback Functions
This section describes the Layer 1 API A429 Playback functions. These
functions are defined in the file ADT_L1_A429_PB.c.

ADT_L1_A429_TX_Channel_PB_Init
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_Init (ADT_L0_UINT32 devID,
 ADT_L0_UINT32 TxChanNum,

ADT_L0_UINT32 BitRateHz,
ADT_L0_UINT32 numPBCB)

This function initializes playback data structures for the specified transmit channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
BitRateHz is the bit rate in Hz (500-500000).
numPBCB is the number of Playback Control Blocks to allocate for the TX channel.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number or invalid bit rate
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

296

ADT_L1_A429_TX_Channel_PB_Close
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_Close

(ADT_L0_UINT32 devID,
 ADT_L0_UINT32 TxChanNum)

This function clears data structures and frees memory used by the specified transmit
channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_TX_Channel_PB_CB_PXPAllocate
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_CB_TXPAllocate (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 PBCBnum,

 ADT_L0_UINT32 numPXP)

This function allocates memory for a playback control block (PBCB) and its
associated playback transmit packets (PXPs).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
PBCBnum is the PBCB number (PBCB index) for which to allocate transmit packets.
numPXP is the number of playback transmit packets to allocate for the PBCB.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_ALREADY_ALLOCATED - TXCB has already been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

297

ADT_L1_A429_TX_Channel_PB_CB_PXPFree
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_CB_TXPFree (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 PBCBnum)

This function frees memory for a transmit control block (TXCB) and its associated
transmit packets (TXPs).

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
PBCB is the PBCB number (PBCB index) for which to free allocated PXP packets.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

298

ADT_L1_A429_TX_Channel_PB_CB_Write
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_CB_Write (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L1_A429_TXCB *pbcb)

This function writes a transmit control block for the specified channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
pbcb is the pointer to the playback control block structure to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

299

ADT_L1_A429_TX_Channel_PB_CB_Read
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_CB_Read (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L1_A429_TXCB *pbcb)

This function reads a transmit control block for the specified channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
pbcb is the pointer to the playback control block structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

300

ADT_L1_A429_TX_Channel_PB_CB_PXPWrite
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_CB_PXPWrite (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L0_UINT32 pxpNum,
ADT_L1_A429_TXP *pPxp)

This function writes a transmit packet for the specified transmit control block.
NOTE: only the lower 6-bits of the TXP Control word are written – user cannot
change the other bits in this word.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (TXCB index).
pxpNum is the transmit packet number (TXP index).
pPxp is the pointer to the transmit packet structure to write.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

301

ADT_L1_A429_TX_Channel_PB_CB_PXPRead
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_CB_PXPRead (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 msgnum,
ADT_L0_UINT32 pxpNum,
ADT_L1_A429_TXP *pPxp)

This function reads a transmit packet for the specified transmit control block.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
msgnum is the message number (PBCB index).
pxpNum is the transmit packet number (PXP index).
pPxp is the pointer to the transmit packet structure.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_TXCB_NOT_ALLOCATED - TXCB has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

302

ADT_L1_A429_TX_Channel_PB_Start
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_Start

(ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum)

This function starts playback transmit operation for the specified transmit channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_NO_TXCB_TABLE - TXCB table has not been allocated
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_TX_Channel_PB_Stop
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_Stop

(ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum)

This function stops playback transmit operation for the specified transmit channel.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

303

ADT_L1_A429_PB_Start
ADT_L0_UINT32 ADT_L1_A429_PB_Start (ADT_L0_UINT32 devID)

This function starts playback on all transmit channels for the device bank.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_PB_Stop
ADT_L0_UINT32 ADT_L1_A429_PB_Stop (ADT_L0_UINT32 devID)

This function stops playback on all transmit channels for the device bank.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

304

ADT_L1_A429_TX_Channel_PB_IsRunning
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_IsRunning (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 *pIsRunning)

This function determines if the specified transmit channel is running.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
pIsRunning is the pointer to store the “is running state”, where zero indicates not running
and non-zero indicates running.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

ADT_L1_A429_TX_Channel_PB_SetConfig
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_SetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 CSR1,

 ADT_L0_UINT32 CSR2)

This function sets the protocol settings for the specified transmit channel. This
function writes values to the CSR1 and CSR2 registers in the transmit channel root
registers. Refer to the A429 Protocol Engine manual for details on these registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
CSR1 is the value for the transmit channel CSR1 register (see PE manual).
CSR2 is the value for the transmit channel CSR2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

305

ADT_L1_A429_TX_Channel_PB_GetConfig
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_GetConfig (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 TxChanNum,
ADT_L0_UINT32 *pCSR1,

 ADT_L0_UINT32 *pCSR2)

This function gets the protocol settings for the specified transmit channel. This
function reads values from the CSR1 and CSR2 registers in the transmit channel
root registers. Refer to the A429 Protocol Engine manual for details on these
registers.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
TxChanNum is the transmit channel number (0-15).
pCSR1 is the pointer for the transmit channel CSR1 register (see PE manual).
pCSR2 is the pointer for the transmit channel CSR2 register (see PE manual).

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

306

ADT_L1_A429_TX_Channel_PB_RXPWrite
ADT_L0_UINT32 ADT_L1_A429_TX_Channel_PB_RXPWrite (

ADT_L0_UINT32 devID,
ADT_L0_UINT32 txChanNum,
ADT_L0_UINT32 numRXPs,
ADT_L1_A429_RXP *RxpBuffer,

 ADT_L0_UINT32 options,
ADT_L0_UINT32 isFirstMessage)

This function converts a block of RXPs to PXPs and writes them to an empty PBCB
buffer.

Parameters:
devID is the device identifier (Backplane, Board Type, Board #, Channel Type, Bank #).
txChanNum is the transmit channel number (0-15).
numRXPs is the number of RXPs pointed to by pRXP.
*RxpBuffer is the pointer to the RXP Buffer (probably and RXP array) to write to the PB
TXP.
options are the packet control word options:

ADT_L1_A429_PBCB_CONTROL_STOPONPBCBCOMP 0x00000010
ADT_L1_A429_PBCB_CONTROL_INTONPBCBCOMP 0x00000100
ADT_L1_A429_PB_API_ATON 0x80000000

isFirstMessage is 1 for the first message in playback or 0 for NOT first message. See the
section on “A429 Playback Operation” for details on playback functions and options.

Returns:

ADT_SUCCESS - Completed without error
ADT_ERR_BUFFER_FULL - Playback buffer is full (no Empty PBCBs)
ADT_ERR_PBCB_TOOMANYPXPS – numRXPs exceeds PBCB PXP buffer alloc
ADT_ERR_BAD_INPUT - Invalid channel number
ADT_ERR_UNSUPPORTED_CHANNELTYPE - Not an A429 device
ADT_FAILURE - Completed with error

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

307

The Layer 2 APIs

This section discusses the Layer 2 APIs.

OS-Specific Device Driver

Backplane (PCI, PCIe, etc.)

Alta Interface Card

Layer 0 (Low Level – OS Specific) API Model - ANSI C

Layer 1 Module (General Operations) – ANSI C

Microsoft Visual Studio 2005
(Managed DLL Assembly) .NET 2.0: C++, C#, VB, etc

AltaDataTech:API Namespace

Layer2 Namespace

Layer1 Namespace
(Managed Wrappers for Layer 1 API Functions)

Layer 2 Model

The concept of the Layer 2 APIs is to encapsulate the basic ANSI “C” Layer 1 API in
higher-level object-oriented code. There could be many different Layer 2 APIs for
different higher-level languages (C++, ADA, C#, etc.).

Layer 2 API for Microsoft Windows .NET 2.0
Alta currently provides one module that would be considered a Layer 2 API – the
ADT_L1_NET20 module, which is a Windows .NET 2.0 assembly. This is discussed
further in Appendix A because it applies only to Microsoft Windows environments.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

308

Appendix A – Microsoft Windows

This appendix discusses installation and operation under Microsoft Windows operating
systems.

Windows Module Architecture

Layer 1 API
(ANSI C)

Layer 0 API
For Win32
(ANSI C)

ADT_L1
DLL

ADT_L0
DLL

ADT_L1_NET20
Assembly/DLL

.NET 2.0 Framework

Microsoft Windows

MSVS
2005/2008

C++

MSVS
2005/2008

C#

Windows Device Drivers
Alta Data Technologies uses the Jungo WinDriver (version 11.4.0) driver development
toolkit for Windows device drivers. These drivers will work for Windows XP
SP3/Server 2003/Server 2008/Vista/7/8.1 (32-bit and 64-bit).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

309

Windows System Requirements
Hardware:

Computer with a 1.6 GHz or faster processor
1024 MB or more of RAM
3 GB or more of available hard-disk space
1024x768 or higher-resolution display with 256 colors, Direct-X 9 capable
Keyboard and Microsoft Mouse or compatible pointing device

Architecture:
 32-bit (x86) or 64-bit (x64)

Operating System:

Microsoft® Windows® XP with Service Pack 3
Microsoft® Windows Vista™ with Service Pack 1
Microsoft® Windows 7™
Microsoft® Windows Server™ 2003 with Service Pack 2
Microsoft® Windows Server™ 2003 R2
Microsoft® Windows Server™ 2008 with Service Pack 2
Microsoft® Windows Server™ 2008 R2
Microsoft® Windows 8.1™

Other:
 Microsoft® .NET Framework version 3.5
 Adobe® Reader (for PDF documentation)

Supported Alta Products
All Alta products are supported for Windows. This includes all PCI, PCI Express, and
ENET products for MIL-STD-1553 and all PCI and PCI Express products for A429.

Supported Compilers and Development Environments
Alta Data Technologies uses Microsoft Visual Studio 2008 and 2010 for building and
testing the API and example programs on Windows platforms. We do not provide
specific support for any other development environments.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

310

Installation of Alta Products
To install the Alta driver and hardware:

1. First install the Alta Software installation package. You will need administrator
privileges to install the software.

a. If you are running Windows XP, first ensure that the system has Service
Pack 3.

b. If you are running 32-bit Windows XP/2003/2008/Vista/7/8.1, run the
Setup.exe program found at the top level of the installation CD.

i. For 64-bit Windows XP/2003/2008/Vista/7/8.1, open the Win64
folder on the CD and run the Setup.exe program found here.

c. This will create the directory “C:\Program Files\Alta Data
Technologies\Alta Software\” which will contain the directories for the Alta
device drivers, APIs, and associated software.

The installer will also install the device driver for you. For Vista/7/8.1, make
sure you have admin privileges (you may need to change roles to become
administrator)!

2. Shut down the computer, install the board, turn on the computer.
3. The system should detect the new hardware. If the system asks for the inf file, it

can be found in the “C:\Windows\inf” directory.
4. Installation is now complete. You can check the installation from the Windows

Device Manager (go to the Windows Control Panel (Classic View), double-click
the System icon, click the Hardware tab, click the Device Manager button). The
Alta device will appear under “Jungo” as shown below:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

311

You can also test the installation using the AltaView software that is installed as part of
the Alta Software installation package – You should see the AltaView & AltaRTVal
icons on the Windows desktop after the software installation.

AltaView is a Windows GUI bus analyzer application that controls the Alta boards.
Refer to the AltaView Software User’s Manual for more information. AltaRTVal is a
Windows GUI SAE AS4111 5.2 Protocol RT Validation Test Application. Refer to the
AltaRTVal Software User’s Manual for more information.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

312

To uninstall the Alta driver and hardware:
1. Turn off the computer and remove the hardware.
2. Turn on the computer.
3. Run the “Command Prompt” to run in console mode.

a. For Vista/7/8.1, right click to select “Run as Administrator”.
4. Change directory to the “C:\Program Files\Alta Data Technologies\Alta

Software\ADT_DeviceDriver\WinXX” directory, where XX is 32 or 64.
5. Enter the following command: wdreg –inf AltaDT_driver.inf uninstall
6. You can uninstall the Alta Software package from the “Add/Remove Programs”

option under the Windows Control Panel.

Anti-Virus Note
Some customers have noticed software functions, archiving and file access issues
running anti-virus software. These programs can be very intrusive for file access and
real-time applications. You may want to disable anti-virus software for real-time or
critical file access applications.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

313

Windows Layer 0 API Files
The Windows Layer 0 module consists of the following files:
 ADT_L0.h – Top-level header file for Layer 0.
 ADT_L0_Windows.c – Implementation of Layer 0 functions for Windows.
 (Source code to interface with the Jungo WinDriver module is not distributed)

This is built into a Windows DLL file and LIB file. Higher level API layers use the
following files:
 ADT_L0.h – Top-level header file for Layer 0.
 ADT_L0.lib – Windows library file for Layer 0.
 ADT_L0.dll – Windows DLL file for Layer 0.

You will not normally write programs to use the Layer 0 API directly – typical
applications will use the Layer 1 or higher level APIs.

Windows Layer 1 API Files
For Microsoft Windows environments, the Layer 1 API files are built into a Windows DLL
file and LIB file. User applications and higher level API layers use the following files:
 ADT_L1.h – Top-level header file for Layer 1.
 ADT_L1.lib – Windows library file for Layer 1.
 ADT_L1.dll – Windows DLL file for Layer 1.

You will also need the following Layer 0 files to run with the Layer 1 files:
 ADT_L0.h – Top-level header file for Layer 0.
 ADT_L0.dll – Windows DLL file for Layer 0.

Layer 1 API Example Programs – **READ ME**
The Layer 1 API is distributed with example programs that can be used to test your
installation and to help get started on developing your own programs. These examples
can be found at “C:\Program Files\Alta Data Technologies\Alta
Software\ADT_L1_API\examples”. Read-me text files are provided with the examples
to describe what each example demonstrates. There is a key parameter called “Device
ID – DEVID” that may need to be changed to match your card configuration. The
readme file provide more information for this easy change. USE THESE EXAMPLES
TO GET STARTED QUICKLY – THERE ARE MANY EXAMPLES THAT WILL JUMP
START MOST APPLICATIONS!!

Using MSVS 2005/2008/2010 C++ with the Layer 1 API
Microsoft Visual C++ can be used with the ANSI “C” Layer 1 API and examples. We will
demonstrate setting up a project to build and run one of the Layer 1 example programs
using Microsoft Visual Studio 2008 (Professional Edition).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

314

Microsoft Visual C++ 2008 Express Edition is available as a free download from
Microsoft and can be found here:
 http://www.microsoft.com/express/product/

You will also need the MSVS 2008 redistribution package to run console programs:

http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=9b2da534-3e03-
4391-8a4d-074b9f2bc1bf&displaylang=en

The Layer 1 API example programs will be built as Windows console applications.
Create a MS Visual C++ Win32 console application project. Name it “ADT_L1_Test”.

http://www.microsoft.com/express/product/�
http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en�
http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en�

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

315

At the next window that pops up, select “Application Settings” (on the left side of the
window). Uncheck “Precompiled header” and check “Empty Project”. Click
“Finish”.

This will create an empty project.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

316

This also creates our basic project directory tree.

Now we need to copy files from the Alta Software installation directories to our project
directory. Copy the following API files and place them in the project directory:

C:\Program Files\Alta Data Technologies\Alta Software\ADT_L0_API\Win32\include\ADT_L0.h
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L0_API\Win32\bin\ADT_L0.dll
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_API\include\ADT_L1.h
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_API\Win32\bin\ADT_L1.lib
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_API\Win32\bin\ADT_L1.dll

Note: If you are using the 64-bit Alta Software installation you will see “\Win64”
rather than “\Win32”. Use the “\Win64” files if you are building a 64-bit
application (x64 target platform). As of version 2.6.0.0, the 64-bit installation
provides lib/dll files for both “Win64” and “x86”. The “x86” files can be used to
run 32-bit applications on 64-bit Windows – this allows applications developed on
32-bit Windows to run on 64-bit Windows in 32-bit “Windows On Windows” mode.
The “Win64” files are used to run 64-bit applications on 64-bit Windows.

We also need one of the example programs:

C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_API\examples\

M1553 Examples\ADT_L1_1553_ex_bc1.c

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

317

Now we should have the files we need in our project directory.

In the Microsoft Visual C++ environment we can add these files to the project. In the
solution explorer, right-click on “Header Files”, select “Add Existing Item”, and add the
ADT_L1.h file. Right-click on “Source Files”, select “Add Existing Item”, and add the
example program. Now your solution explorer should look something like this.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

318

We also have to configure the project to include the LIB file for the Layer 1 API. In the
Solution Explorer, right-click on the project (ADT_L1_Test) then click on “Properties” to
bring up the project property pages. Navigate the tree on the left to select “Input” (under
Configuration Properties, Linker). In the “Additional Dependencies” field, type
“ADT_L1.lib” as shown below. Click on the “OK” button.

Now your project setup is complete! You should edit the example program and
make sure it is using a device identifier that corresponds to an Alta device
installed in your system. If the DEVID is not correct you will see error 3 on
initialization. You can now build the example program.

You should copy the two DLL files (ADT_L0.dll and ADT_L1.dll) to the folder where the
executable is generated (/ADT_L1_Test/Debug) to ensure that the EXE can find the
DLLs at run time.

Note: If you are using the 64-bit Alta Software installation you will need to change
the “Solution Platform” setting in your MSVS project from “Win32” to “x64” so
that the project will build a 64-bit executable.

You can now use this project to build any of the example programs or to develop your
own programs.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

319

NOTE ON MSI INTERRUPTS:
PCI Express devices use Message Signalled Interrupts (MSI). If you have two (or
more) independent applications controlling different channels of the same PCIe board,
and two or more of these applications use interrupts, this will not work – will crash the
system (because the last application to enable interrupts overwrites the setting made by
the others).
You CAN use independent applications on different channels of the same PCIe board if
no more than one of them uses interrupts.
You CAN use interrupts on multiple channels of the same PCIe board if all of the
channels using interrupts are controlled by the same application.
You CANNOT use interrupts on multiple channels of the same PCIe board if the
channels using interrupts are controlled by separate independent applications.

On Windows platforms there is a way to work around this problem (by changing the inf
file for the device to use line-based interrupts rather than MSI interrupts). Contact Alta
technical support for more information on this approach.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

320

Windows .NET 2.0 Support
For Microsoft Windows environments using the .NET 2.0 framework, the Layer 1 API is
encapsulated in a .NET 2.0 assembly (managed DLL) that defines the namespace
AltaDataTech:API:Layer1. This is provided in the file:
 ADT_L1_NET20.dll - .NET 2.0 assembly containing Layer 1 functions.

This is basically a set of .NET managed-code wrapper functions that encapsulate the
unmanaged ADT_L1 Layer 1 API functions. This module can be used on Microsoft
Windows platforms with Microsoft Visual Studio 2005 for C#, VB, C++ or any other
language supporting .NET. For more information on the Microsoft .NET framework go
to:
 http://msdn2.microsoft.com/en-us/netframework/default.aspx
 http://en.wikipedia.org/wiki/.NET_Framework

Note: The source code for the ADT_L1_NET20 assembly is not included in the
software distribution. This source code is considered Alta proprietary and is not
distributed without an appropriate non-disclosure agreement.

You will also need the following Layer 0 and Layer 1 files to run with the
ADT_L1_NET20 assembly:
 ADT_L0.dll – Windows DLL file for Layer 0.
 ADT_L1.dll – Windows DLL file for Layer 1.

Layer 1 .NET API Example Programs – **READ ME**
The Layer 1 .NET API is distributed with example programs that can be used to test
your installation and to help get started on developing your own programs. These
examples can be found at “C:\Program Files\Alta Data Technologies\Alta
Software\ADT_L1_NET20_API\examples”. Read-me text files are provided with the
examples to describe what each example demonstrates. There is a key parameter
called “Device ID – DEVID” that may need to be changed to match your card
configuration. The readme file provide more information for this easy change. USE
THESE EXAMPLES TO GET STARTED QUICKLY – THERE ARE MANY EXAMPLES
THAT WILL JUMP START MOST APPLICATIONS!!

Using MSVS 2005/2008 C# with the Layer 1 .NET 2.0 API
Microsoft Visual Studio 2005/2008 can be used to develop .NET 2.0 applications using
the ADT_L1_NET20 assembly. We will demonstrate setting up a project to build and
run a simple C# .NET 2.0 program using the Alta APIs (with Microsoft Visual Studio
2005 Professional Edition).

http://msdn2.microsoft.com/en-us/netframework/default.aspx�
http://en.wikipedia.org/wiki/.NET_Framework�

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

321

Microsoft Visual C# 2005 Express Edition is available as a free download from Microsoft
and can be found here:
 http://www.microsoft.com/express/product/

Create a Microsoft Visual C# Windows console application project. Name it
“ADT_L1_NET20_Test”. SELECT A TARGET FRAMEWORK OF .NET FRAMEWORK
2.0.

This will create our project with a template C# file called “program.cs”. We need to link
our project to the ADT_L1_NET20 assembly so we can access the API from our
program. In the solution explorer, right click on “References” and select “Add
Reference…”.

This brings up the “Add Reference” dialog box. Select the “Browse” tab and go to the
directory:

For 32-bit Windows:

http://www.microsoft.com/express/product/�

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

322

C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_NET20_API\Win32\bin
For 64-bit Windows:
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_NET20_API\Win64\bin

Select the file “ADT_L1_NET20.dll” as shown below. Click the “OK” button.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

323

We also need the DLL files for the Layer 0 and Layer 1 APIs. Copy these files into the
\bin\debug directory for the project:

For 32-bit Windows:
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L0_API\Win32\bin\ADT_L0.dll
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_API\Win32\bin\ADT_L1.dll

For 64-bit Windows:
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L0_API\Win64\bin\ADT_L0.dll
C:\Program Files\Alta Data Technologies\Alta Software\ADT_L1_API\Win64\bin\ADT_L1.dll

Note: When you use a release build of your application you will need these DLLs in the
\bin\release directory for your project. If you distribute the final application, these DLLs
and the ADT_L1_NET20 assembly should be in the same directory as the executable
file for the application.

Now our project directory looks something like this:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

324

Now let’s modify the shell C# program to use the Alta API. First we will add a “using”
statement to tell the program that we are using the Alta Layer 1 API assembly, as
shown below:

Modify your main program as follows:

This instantiates an ADT_L1 object called “api”. We use this object to call methods that
correspond to Layer 1 API functions. In this simple example all we do is initialize a

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

325

device then close it, but this shows how to access the API from C# using the
ADT_L1_NET20 assembly.

As noted in the program comments, you should verify that you use a Device ID that is
valid for an Alta board installed in your system. When you run the program you should
see something like this:

You should now be able to use the provided C# example programs and use the Alta API
in your own programs written in C# (or any other .NET language).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

326

Using LabWindows/CVITM with the Layer 1 API
LabWindows/CVI is the National Instruments development environment for C/C++
programming. CVI can use the standard L0 and L1 Windows DLLs and setting this up
is similar to setup for Microsoft Visual Studio.

Your project should start with one of the L1 example programs – we will use
ADT_L1_1553_ex_rt1.c here. You will also need the L0 and L1 header files (ADT_L0.h
and ADT_L1.h) and the L1 lib file (ADT_L1.lib). Here is what your project should look
like:

Edit the ADT_L0.h file. You will need to edit the #include lines to include the files
needed when compiling in LabWindows/CVI. Here is what it should look like:

Edit the example program (ADT_L1_1553_ex_rt1.c). Verify that the #define for DEVID
selects the board type that matches the Alta board you are using. The board type
constants are defined in ADT_L1.h – see this file for a full list of the possible board type
constants. This is what it looks like for a PCI-1553 board:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

327

Now you can build the project. Go to the “Build” menu and select “Create Debuggable
Executable”.

This will create an executable file. This executable will need to be able to find the
AltaAPI DLL files (ADT_L0.dll and ADT_L1.dll) – you can copy these two DLL files
into the same directory as your executable file (normally this will be in the folder “\My
Documents\National Instruments\CVI”).

Now you can run the program by clicking on the green arrow icon in the
LabWindows/CVI toolbar.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

328

If you are using the ADT_L1_1553_ex_rt1.c example program, you should now see
something like this:

In this example, RT1 is now running and ready for commands from the Bus Controller.
You can use AltaView (on another 1553 channel) as BC and BM to send messages to
the RT and verify the RT response.

Now you can replace the ADT_L1_1553_ex_rt1.c program in your project with any of
the example programs for 1553 BC, RT, BM, etc. If you are using an A429 board you
can use the A429 example programs. These example programs can provide a starting
point for developing your own programs and applications using the AltaAPI.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

329

Using LabVIEWTM and LabVIEW Real-TimeTM with the Layer 1
API
There are several possible methods to use the Alta Layer 1 API with LabVIEW. The
recommended approach is to use the AltaAPI-LV software, which is a LabVIEW
library (lvlib) containing custom controls and a set of over 200 “wrapper” VIs
corresponding to the AltaAPI functions. The AltaAPI-LV software uses the NI-VISA
library in Layer 0 to communicate with hardware and therefore it can be used on both
standard Windows systems and on LabVIEW Real-Time targets. The AltaAPI-LV
software is supported for National Instruments LabVIEWTM version 8.6.1 or later.

Note that AltaAPI-LV is separate from the standard Windows version of the Alta API and
uses NI-VISA rather than Jungo WinDriver at the low level (Layer 0). Therefore
AltaAPI-LV may not support all the Alta products supported by the standard Windows
driver. Contact Alta if you have questions on AltaAPI-LV support for a specific product.

Please refer to the AltaAPI-LV Users Manuals for more information.

Using LabVIEWTM with the Layer 1 .NET 2.0 API
Another approach is to directly call the AltaAPI functions through either the Win32 DLL
or the .NET assembly DLL. Note that this approach will not work with LabVIEW Real-
Time targets. National Instruments LabVIEWTM version 8.5 or later integrates easily
with the .NET framework and can import .NET assemblies to access the associated
classes and methods. This makes it easy to import the Alta Layer 1 .NET 2.0 API.

WARNING – not all API functions use parameter types that are directly compatible
with LabVIEW. Some API functions may not be usable in the LabVIEW
environment because of this. LabVIEW applications that need these functions
should use the AltaAPI-LV software rather than directly using the Alta Layer 1
.NET 2.0 API.

Place a copy of the following files where they can easily be referenced from your
LabVIEWTM code:
 ADT_L1_NET20.dll
 ADT_L1.dll
 ADT_L0.dll

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

330

Right-click on your block diagram to bring up the functions window, then go to the .NET
palette.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

331

Select the Constructor Node and place it on your block diagram. A dialog-box will
pop-up for you to select the .NET assembly to use. Browse to find the
ADT_L1_NET20.dll assembly. Select the desired class within the assembly and click
the OK button.

The Property Node can be used to access properties and public members of a class.

The Invoke Node can be used to call the methods of a class.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

332

You can now build your LabVIEWTM application using the Alta Layer 1 .NET 2.0 classes
and methods.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

333

Layer 1 .NET 2.0 API Classes and Methods
The ADT_L1_NET20 assembly contains the following classes:

CLASS_1553_CDP
This class corresponds to the Layer 1 structure ADT_L1_1553_CDP. Instances of this
class are passed as parameters for the ADT_L1 methods.

CLASS_1553_BC_CB
This class corresponds to the Layer 1 structure ADT_L1_1553_BC_CB. Instances of
this class are passed as parameters for the ADT_L1 methods.

CLASS_A429_RXP
This class corresponds to the Layer 1 structure ADT_L1_A429_RXP. Instances of this
class are passed as parameters for the ADT_L1 methods.

CLASS_A429_TXP
This class corresponds to the Layer 1 structure ADT_L1_A429_TXP. Instances of this
class are passed as parameters for the ADT_L1 methods. This class can also be used
for playback (PXPs).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

334

ADT_L1
This class encapsulates some Layer 0 API functions and most of the Layer 1 API
functions. The following table lists the methods in this class and the corresponding
Layer 0 and Layer 1 API functions.

ADT_L1 Method Layer 0 or Layer 1 API Function
MapMemory ADT_L0_MapMemory
ReadMem32 ADT_L0_ReadMem32
WriteMem32 ADT_L0_WriteMem32

DevicePresent ADT_L1_DevicePresent
DevicePresent_pciInfo ADT_L1_DevicePresent_pciInfo
InitDevice ADT_L1_InitDevice
CloseDevice ADT_L1_CloseDevice
GetVersionInfo ADT_L1_GetVersionInfo
GetBoardInfo ADT_L1_GetBoardInfo
GetMemoryAvailable ADT_L1_GetMemoryAvailable
ReadDeviceMem32 ADT_L1_ReadDeviceMem32
WriteDeviceMem32 ADT_L1_WriteDeviceMem32
ProgramBoardFlash ADT_L1_ProgramBoardFlash
msSleep ADT_L1_msSleep
ENET_SetIpAddr ADT_L1_ENET_SetIpAddr
ENET_GetIpAddr ADT_L1_ENET_GetIpAddr
ENET_ADCP_Reset ADT_L1_ENET_ADCP_Reset
ENET_ADCP_GetStatistics ADT_L1_ENET_ADCP_GetStatistics
ENET_ADCP_ClearStatistics ADT_L1_ENET_ADCP_ClearStatistics

InitMemMgmt ADT_L1_InitMemMgmt
CloseMemMgmt ADT_L1_CloseMemMgmt
MemoryAlloc ADT_L1_MemoryAlloc
MemoryFree ADT_L1_MemoryFree
GetMemoryAvailable ADT_L1_GetMemoryAvailable

Global_TimeClear ADT_L1_Global_TimeClear
Global_I2C_ReadTemp ADT_L1_Global_I2C_ReadTemp
Global_I2C_SetIrigDac ADT_L1_Global_I2C_SetIrigDac
Global_I2C_SetVVDac ADT_L1_Global_I2C_SetVVDac
Global_ConfigExtClk ADT_L1_Global_ConfigExtClk
Global_CalibrateIrigDac ADT_L1_Global_CalibrateIrigDac
Global_CalibrateIrigDacOptions ADT_L1_Global_CalibrateIrigDacOptions
Global_ReadIrigTime ADT_L1_Global_ReadIrigTime

BIT_MemoryTest ADT_L1_BIT_MemoryTest
BIT_InitiatedBIT ADT_L1_BIT_InitiatedBIT
BIT_PeriodicBIT ADT_L1_BIT_PeriodicBIT

INT_HandlerAttach ADT_L1_INT_HandlerAttach
INT_HandlerDetach ADT_L1_INT_HandlerDetach

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

335

m1553_InitDefault ADT_L1_1553_InitDefault
m1553_InitChannel ADT_L1_1553_InitChannel
m1553_InitChannelLive ADT_L1_1553_InitChannelLive
m1553_SetConfig ADT_L1_1553_SetConfig
m1553_GetConfig ADT_L1_1553_GetConfig
m1553_GetPEInfo ADT_L1_1553_GetPEInfo
m1553_TimeSet ADT_L1_1553_TimeSet
m1553_TimeGet ADT_L1_1553_TimeGet
m1553_TimeClear ADT_L1_1553_TimeClear
m1553_IrigLatchedTimeGet ADT_L1_1553_IrigLatchedTimeGet
m1553_PBTimeSet ADT_L1_1553_PBTimeSet
m1553_PBTimeGet ADT_L1_1553_PBTimeGet
m1553_UseExtClk ADT_L1_1553_UseExtClk
m1553_ForceTrgOut ADT_L1_1553_ForceTrgOut
m1553_SC_ArmTrigger ADT_L1_1553_SC_ArmTrigger
m1553_SC_ReadBuffer ADT_L1_1553_SC_ReadBuffer
m1553_CDP_Calculate_1760_Checksum ADT_L1_1553_CDP_Calculate_1760_Checksum
m1553_IntervalTimerGet ADT_L1_1553_IntervalTimerGet
m1553_IntervalTimerSet ADT_L1_1553_IntervalTimerSet

m1553_INT_EnableInt ADT_L1_1553_INT_EnableInt
m1553_INT_DisableInt ADT_L1_1553_INT_DisableInt
m1553_INT_SetIntSeqNum ADT_L1_1553_INT_SetIntSeqNum
m1553_INT_GetIntSeqNum ADT_L1_1553_INT_GetIntSeqNum
m1553_INT_CheckChannelIntPending ADT_L1_1553_INT_CheckChannelIntPending
m1553_INT_IQ_ReadEntry ADT_L1_1553_INT_IQ_ReadEntry

m1553_BC_Init ADT_L1_1553_BC_Init
m1553_BC_Close ADT_L1_1553_BC_Close
m1553_BC_CB_CDPAllocate ADT_L1_1553_BC_CB_CDPAllocate
m1553_BC_CB_CDPFree ADT_L1_1553_BC_CB_CDPFree
m1553_BC_CB_Write ADT_L1_1553_BC_CB_Write
m1553_BC_CB_Read ADT_L1_1553_BC_CB_Read
m1553_BC_CB_CDPWrite ADT_L1_1553_BC_CB_CDPWrite
m1553_BC_CB_CDPWriteWords ADT_L1_1553_BC_CB_CDPWriteWords
m1553_BC_CB_CDPRead ADT_L1_1553_BC_CB_CDPRead
m1553_BC_CB_CDPReadWords ADT_L1_1553_BC_CB_CDPReadWords
m1553_BC_Start ADT_L1_1553_BC_Start
m1553_BC_Stop ADT_L1_1553_BC_Stop
m1553_BC_AperiodicSend ADT_L1_1553_BC_AperiodicSend
m1553_BC_IsRunning ADT_L1_1553_BC_IsRunning
m1553_BC_AperiodicIsRunning ADT_L1_1553_BC_AperiodicIsRunning
m1553_BC_GetFrameCount ADT_L1_1553_BC_GetFrameCount
m1553_BC_InjCmdWordError ADT_L1_1553_BC_InjCmdWordError
m1553_BC_ReadCmdWordError ADT_L1_1553_BC_ReadCmdWordError
m1553_BC_CB_SetAddressBranchValues ADT_L1_1553_BC_CB_SetAddressBranchValues

m1553_RT_Init ADT_L1_1553_RT_Init
m1553_RT_Close ADT_L1_1553_RT_Close
m1553_RT_Start ADT_L1_1553_RT_Start
m1553_RT_Stop ADT_L1_1553_RT_Stop
m1553_RT_Enable ADT_L1_1553_RT_Enable

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

336

m1553_RT_Disable ADT_L1_1553_RT_Disable
m1553_RT_Monitor ADT_L1_1553_RT_Monitor
m1553_RT_SetRespTime ADT_L1_1553_RT_SetRespTime
m1553_RT_GetRespTime ADT_L1_1553_RT_GetRespTime
m1553_RT_InjStsWordError ADT_L1_1553_RT_InjStsWordError
m1553_RT_ReadStsWordError ADT_L1_1553_RT_ReadStsWordError
m1553_RT_SetOptions ADT_L1_1553_RT_SetOptions
m1553_RT_GetOptions ADT_L1_1553_RT_GetOptions
m1553_RT_SetSingleRTAddr ADT_L1_1553_RT_SetSingleRTAddr
m1553_RT_GetSingleRTAddr ADT_L1_1553_RT_GetSingleRTAddr
m1553_RT_GetExternalRTAddr ADT_L1_1553_RT_GetExternalRTAddr
m1553_RT_GetLastCmd ADT_L1_1553_RT_GetLastCmd
m1553_RT_StatusWrite ADT_L1_1553_RT_StatusWrite
m1553_RT_StatusRead ADT_L1_1553_RT_StatusRead
m1553_RT_SA_LegalizationWrite ADT_L1_1553_RT_SA_LegalizationWrite
m1553_RT_SA_LegalizationRead ADT_L1_1553_RT_SA_LegalizationRead
m1553_RT_MC_LegalizationWrite ADT_L1_1553_RT_MC_LegalizationWrite
m1553_RT_MC_LegalizationRead ADT_L1_1553_RT_MC_LegalizationRead
m1553_RT_SA_CDPAllocate ADT_L1_1553_RT_SA_CDPAllocate
m1553_RT_SA_CDPFree ADT_L1_1553_RT_SA_CDPFree
m1553_RT_SA_CDPWrite ADT_L1_1553_RT_SA_CDPWrite
m1553_RT_SA_CDPWriteWords ADT_L1_1553_RT_SA_CDPWriteWords
m1553_RT_SA_CDPRead ADT_L1_1553_RT_SA_CDPRead
m1553_RT_SA_CDPReadWords ADT_L1_1553_RT_SA_CDPReadWords
m1553_RT_MC_CDPAllocate ADT_L1_1553_RT_MC_CDPAllocate
m1553_RT_MC_CDPFree ADT_L1_1553_RT_MC_CDPFree
m1553_RT_MC_CDPWrite ADT_L1_1553_RT_MC_CDPWrite
m1553_RT_SA_CDPWriteWords ADT_L1_1553_RT_MC_CDPWriteWords
m1553_RT_MC_CDPRead ADT_L1_1553_RT_MC_CDPRead
m1553_RT_SA_CDPReadWords ADT_L1_1553_RT_MC_CDPReadWords

m1553_BM_Config ADT_L1_1553_BM_Config
m1553_BM_Start ADT_L1_1553_BM_Start
m1553_BM_Stop ADT_L1_1553_BM_Stop
m1553_BM_Clear ADT_L1_1553_BM_Clear
m1553_BM_FilterRead ADT_L1_1553_BM_FilterRead
m1553_BM_FilterWrite ADT_L1_1553_BM_FilterWrite
m1553_BM_BufferCreate ADT_L1_1553_BM_BufferCreate
m1553_BM_BufferFree ADT_L1_1553_BM_BufferFree
m1553_BM_ReadNewMsgs ADT_L1_1553_BM_ReadNewMsgs
m1553_BM_ReadNewMsgsDMA ADT_L1_1553_BM_ReadNewMsgsDMA
m1553_BM_CDPWrite ADT_L1_1553_BM_CDPWrite
m1553_BM_CDPRead ADT_L1_1553_BM_CDPRead

m1553_PB_SetRtResponse ADT_L1_1553_PB_SetRtResponse
m1553_PB_GetRtResponse ADT_L1_1553_PB_GetRtResponse
m1553_PB_Allocate ADT_L1_1553_PB_Allocate
m1553_PB_Free ADT_L1_1553_PB_Free
m1553_PB_CDPWrite ADT_L1_1553_PB_CDPWrite
m1553_PB_Start ADT_L1_1553_PB_Start
m1553_PB_Stop ADT_L1_1553_PB_Stop

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

337

m1553_PB_IsRunning ADT_L1_1553_PB_IsRunning

m1553_SG_Configure ADT_L1_1553_SG_Configure
m1553_SG_Free ADT_L1_1553_SG_Free
m1553_SG_CreateSGCB ADT_L1_1553_SG_CreateSGCB
m1553_SG_Start ADT_L1_1553_SG_Start
m1553_SG_Stop ADT_L1_1553_SG_Stop
m1553_SG_IsRunning ADT_L1_1553_SG_IsRunning
m1553_SG_WordToVectors ADT_L1_1553_SG_WordToVectors
m1553_SG_AddVectors ADT_L1_1553_SG_AddVectors

a429_InitDefault ADT_L1_A429_InitDefault
a429_InitDevice ADT_L1_A429_InitDevice
a429_GetConfig ADT_L1_A429_GetConfig
a429_GetPEInfo ADT_L1_A429_GetPEInfo
a429_TimeSet ADT_L1_A429_TimeSet
a429_TimeGet ADT_L1_A429_TimeGet
a429_PBTimeSet ADT_L1_A429_PBTimeSet
a429_PBTimeGet ADT_L1_A429_PBTimeGet
a429_TimeClear ADT_L1_A429_TimeClear
a429_SC_ArmTrigger ADT_L1_A429_SC_ArmTrigger
a429_SC_ReadBuffer ADT_L1_A429_SC_ReadBuffer
a429_IntervalTimerGet ADT_L1_A429_IntervalTimerGet
a429_IntervalTimerSet ADT_L1_A429_IntervalTimerSet
a429_IrigLatchedTimeGet ADT_L1_A429_IrigLatchedTimeGet

a429_INT_EnableInt ADT_L1_A429_INT_EnableInt
a429_INT_DisableInt ADT_L1_A429_INT_DisableInt
a429_INT_CheckDeviceIntPending ADT_L1_A429_INT_CheckDeviceIntPending
a429_INT_IQ_ReadEntry ADT_L1_A429_INT_IQ_ReadEntry
a429_INT_SetIntSeqNum ADT_L1_A429_INT_SetIntSeqNum
a429_INT_GetIntSeqNum ADT_L1_A429_INT_GetIntSeqNum

a429_RXMC_BufferCreate ADT_L1_A429_RXMC_BufferCreate
a429_RXMC_BufferFree ADT_L1_A429_RXMC_BufferFree
a429_RXMC_ReadNewRxPs ADT_L1_A429_RXMC_ReadNewRxPs
a429_RXMC_ReadRxP ADT_L1_A429_RXMC_ReadRxP

a429_RX_Channel_Init ADT_L1_A429_RX_Channel_Init
a429_RX_Channel_Close ADT_L1_A429_RX_Channel_Close
a429_RX_Channel_Start ADT_L1_A429_RX_Channel_Start
a429_RX_Channel_Stop ADT_L1_A429_RX_Channel_Stop
a429_RX_Channel_ReadNewRxPs ADT_L1_A429_RX_Channel_ReadNewRxPs
a429_RX_Channel_ReadRxP ADT_L1_A429_RX_Channel_ReadRxP
a429_RX_Channel_CVTReadRxP ADT_L1_A429_RX_Channel_CVTReadRxP
a429_RX_Channel_WriteRxP ADT_L1_A429_RX_Channel_WriteRxP
a429_RX_Channel_CVTWriteRxP ADT_L1_A429_RX_Channel_CVTWriteRxP
a429_RX_Channel_SetConfig ADT_L1_A429_RX_Channel_SetConfig
a429_RX_Channel_GetConfig ADT_L1_A429_RX_Channel_GetConfig
a429_RX_Channel_SetMaskCompare ADT_L1_A429_RX_Channel_SetMaskCompare
a429_RX_Channel_GetMaskCompare ADT_L1_A429_RX_Channel_GetMaskCompare

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

338

a717_RX_Channel_SetConfig ADT_L1_A717_RX_Channel_SetConfig
a717_RX_Channel_GetConfig ADT_L1_A717_RX_Channel_GetConfig

a429_TX_Channel_Init ADT_L1_A429_TX_Channel_Init
a429_TX_Channel_Close ADT_L1_A429_TX_Channel_Close
a429_TX_Channel_CB_TXPAllocate ADT_L1_A429_TX_Channel_CB_TXPAllocate
a429_TX_Channel_CB_TXPFree ADT_L1_A429_TX_Channel_CB_TXPFree
a429_TX_Channel_CB_Write ADT_L1_A429_TX_Channel_CB_Write
a429_TX_Channel_CB_Read ADT_L1_A429_TX_Channel_CB_Read
a429_TX_Channel_CB_TXPWrite ADT_L1_A429_TX_Channel_CB_TXPWrite
a429_TX_Channel_CB_TXPRead ADT_L1_A429_TX_Channel_CB_TXPRead
a429_TX_Channel_Start ADT_L1_A429_TX_Channel_Start
a429_TX_Channel_Stop ADT_L1_A429_TX_Channel_Stop
a429_TX_Channel_IsRunning ADT_L1_A429_TX_Channel_IsRunning
a429_TX_Channel_SendLabel ADT_L1_A429_TX_Channel_SendLabel
a429_TX_Channel_SendLabelBlock ADT_L1_A429_TX_Channel_SendLabelBlock
a429_TX_Channel_GetConfig ADT_L1_A429_TX_Channel_GetConfig
a429_TX_Channel_SetConfig ADT_L1_A429_TX_Channel_SetConfig
a429_TX_Channel_AperiodicSend ADT_L1_A429_TX_Channel_AperiodicSend
a429_TX_Channel_AperiodicIsRunning ADT_L1_A429_TX_Channel_AperiodicIsRunning

a429_SG_Configure ADT_L1_A429_SG_Configure
a429_SG_Free ADT_L1_A429_SG_Free
a429_SG_CreateSGCB ADT_L1_A429_SG_CreateSGCB
a429_SG_Start ADT_L1_A429_SG_Start
a429_SG_Stop ADT_L1_A429_SG_Stop
a429_SG_IsRunning ADT_L1_A429_SG_IsRunning
a429_SG_WordToVectors ADT_L1_A429_SG_WordToVectors
a429_SG_AddVectors ADT_L1_A429_SG_AddVectors

a429_TX_Channel_PB_Init ADT_L1_A429_TX_Channel_PB_Init
a429_TX_Channel_PB_Close ADT_L1_A429_TX_Channel_PB_Close
a429_TX_Channel_PB_CB_TXPAllocate ADT_L1_A429_TX_Channel_PB_CB_TXPAllocate
a429_TX_Channel_PB_CB_TXPFree ADT_L1_A429_TX_Channel_PB_CB_TXPFree
a429_TX_Channel_PB_CB_Write ADT_L1_A429_TX_Channel_PB_CB_Write
a429_TX_Channel_PB_CB_Read ADT_L1_A429_TX_Channel_PB_CB_Read
a429_TX_Channel_PB_CB_TXPWrite ADT_L1_A429_TX_Channel_PB_CB_TXPWrite
a429_TX_Channel_PB_CB_TXPRead ADT_L1_A429_TX_Channel_PB_CB_TXPRead
a429_TX_Channel_PB_Start ADT_L1_A429_TX_Channel_PB_Start
a429_TX_Channel_PB_Stop ADT_L1_A429_TX_Channel_PB_Stop
a429_TX_Channel_PB_IsRunning ADT_L1_A429_TX_Channel_PB_IsRunning
a429_TX_Channel_PB_SetConfig ADT_L1_A429_TX_Channel_PB_SetConfig
a429_TX_Channel_PB_GetConfig ADT_L1_A429_TX_Channel_PB_GetConfig
a429_TX_Channel_PB_RXPWrite ADT_L1_A429_TX_Channel_PB_RXPWrite

The ADT_L1 class also defines constants corresponding to the Layer 0 and Layer 1
constants. These are listed below:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

339

ADT_L1 Constant Layer 0 or Layer 1 Constant
DEVID_BACKPLANETYPE_SIMULATED ADT_DEVID_BACKPLANETYPE_SIMULATED
DEVID_BACKPLANETYPE_PCI ADT_DEVID_BACKPLANETYPE_PCI
DEVID_BACKPLANETYPE_ENET ADT_DEVID_BACKPLANETYPE_ENET

DEVID_BOARDTYPE_SIM1553 ADT_DEVID_BOARDTYPE_SIM1553
DEVID_BOARDTYPE_TEST1553 ADT_DEVID_BOARDTYPE_TEST1553
DEVID_BOARDTYPE_PMC1553 ADT_DEVID_BOARDTYPE_PMC1553
DEVID_BOARDTYPE_PC104P1553 ADT_DEVID_BOARDTYPE_PC104P1553
DEVID_BOARDTYPE_PCI1553 ADT_DEVID_BOARDTYPE_PCI1553
DEVID_BOARDTYPE_PCCD1553 ADT_DEVID_BOARDTYPE_PCCD1553
DEVID_BOARDTYPE_PCI104E1553 ADT_DEVID_BOARDTYPE_PCI104E1553
DEVID_BOARDTYPE_XMC1553 ADT_DEVID_BOARDTYPE_XMC1553
DEVID_BOARDTYPE_ECD54_1553 ADT_DEVID_BOARDTYPE_ECD54_1553
DEVID_BOARDTYPE_PCIE4L1553 ADT_DEVID_BOARDTYPE_PCIE4L1553
DEVID_BOARDTYPE_PCIE1L1553 ADT_DEVID_BOARDTYPE_PCIE1L1553
DEVID_BOARDTYPE_MPCIE1553 ADT_DEVID_BOARDTYPE_MPCIE1553
DEVID_BOARDTYPE_SIMA429 ADT_DEVID_BOARDTYPE_SIMA429
DEVID_BOARDTYPE_TESTA429 ADT_DEVID_BOARDTYPE_TESTA429
DEVID_BOARDTYPE_PMCA429 ADT_DEVID_BOARDTYPE_PMCA429
DEVID_BOARDTYPE_PC104PA429 ADT_DEVID_BOARDTYPE_PC104PA429
DEVID_BOARDTYPE_PCIA429 ADT_DEVID_BOARDTYPE_PCIA429
DEVID_BOARDTYPE_PCCDA429 ADT_DEVID_BOARDTYPE_PCCDA429
DEVID_BOARDTYPE_PCI104EA429 ADT_DEVID_BOARDTYPE_PCI104EA429
DEVID_BOARDTYPE_XMCA429 ADT_DEVID_BOARDTYPE_XMCA429
DEVID_BOARDTYPE_ECD54_A429 ADT_DEVID_BOARDTYPE_ECD54_A429
DEVID_BOARDTYPE_PCIE4LA429 ADT_DEVID_BOARDTYPE_PCIE4LA429
DEVID_BOARDTYPE_PCIE1LA429 ADT_DEVID_BOARDTYPE_PCIE1LA429
DEVID_BOARDTYPE_MPCIEA429 ADT_DEVID_BOARDTYPE_MPCIEA429
DEVID_BOARDTYPE_PMCMA4 ADT_DEVID_BOARDTYPE_PMCMA4
DEVID_BOARDTYPE_PC104PMA4 ADT_DEVID_BOARDTYPE_PC104PMA4
DEVID_BOARDTYPE_XMCMA4 ADT_DEVID_BOARDTYPE_XMCMA4
DEVID_BOARDTYPE_ENET1553 ADT_DEVID_BOARDTYPE_ENET1553
DEVID_BOARDTYPE_PMCE1553 ADT_DEVID_BOARDTYPE_PMCE1553
DEVID_BOARDTYPE_ENETA429 ADT_DEVID_BOARDTYPE_ENETA429

DEVID_PRODUCT_SIM1553 ADT_PRODUCT_SIM1553
DEVID_PRODUCT_TEST1553 ADT_PRODUCT_TEST1553
DEVID_PRODUCT_PMC1553 ADT_PRODUCT_PMC1553
DEVID_PRODUCT_PC104P1553 ADT_PRODUCT_PC104P1553
DEVID_PRODUCT_PCI1553 ADT_PRODUCT_PCI1553
DEVID_PRODUCT_PCCD1553 ADT_PRODUCT_PCCD1553
DEVID_PRODUCT_PCI104E1553 ADT_PRODUCT_PCI104E1553
DEVID_PRODUCT_XMC1553 ADT_PRODUCT_XMC1553
DEVID_PRODUCT_ECD54_1553 ADT_PRODUCT_ECD54_1553
DEVID_PRODUCT_PCIE4L1553 ADT_PRODUCT_PCIE4L1553
DEVID_PRODUCT_PCIE1L1553 ADT_PRODUCT_PCIE1L1553
DEVID_PRODUCT_MPCIE1553 ADT_PRODUCT_MPCIE1553
DEVID_PRODUCT_SIMA429 ADT_PRODUCT_SIMA429
DEVID_PRODUCT_TESTA429 ADT_PRODUCT_TESTA429
DEVID_PRODUCT_PMCA429 ADT_PRODUCT_PMCA429

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

340

DEVID_PRODUCT_PC104PA429 ADT_PRODUCT_PC104PA429
DEVID_PRODUCT_PCIA429 ADT_PRODUCT_PCIA429
DEVID_PRODUCT_PCCDA429 ADT_PRODUCT_PCCDA429
DEVID_PRODUCT_PCI104EA429 ADT_PRODUCT_PCI104EA429
DEVID_PRODUCT_XMCA429 ADT_PRODUCT_XMCA429
DEVID_PRODUCT_ECD54_A429 ADT_PRODUCT_ECD54_A429
DEVID_PRODUCT_PCIE4LA429 ADT_PRODUCT_PCIE4LA429
DEVID_PRODUCT_PMCMA4 ADT_PRODUCT_PMCMA4
DEVID_PRODUCT_PC104PMA4 ADT_PRODUCT_PC104PMA4
DEVID_PRODUCT_XMCMA4 ADT_PRODUCT_XMCMA4
DEVID_PRODUCT_ENET1553 ADT_PRODUCT_ENET1553
DEVID_PRODUCT_PMCE1553 ADT_PRODUCT_PMCE1553
DEVID_PRODUCT_ENETA429 ADT_PRODUCT_ENETA429

DEVID_BOARDNUM_01 ADT_DEVID_BOARDNUM_01
DEVID_BOARDNUM_02 ADT_DEVID_BOARDNUM_02
DEVID_BOARDNUM_03 ADT_DEVID_BOARDNUM_03
DEVID_BOARDNUM_04 ADT_DEVID_BOARDNUM_04
DEVID_BOARDNUM_05 ADT_DEVID_BOARDNUM_05
DEVID_BOARDNUM_06 ADT_DEVID_BOARDNUM_06
DEVID_BOARDNUM_07 ADT_DEVID_BOARDNUM_07
DEVID_BOARDNUM_08 ADT_DEVID_BOARDNUM_08
DEVID_BOARDNUM_09 ADT_DEVID_BOARDNUM_09
DEVID_BOARDNUM_10 ADT_DEVID_BOARDNUM_10
DEVID_BOARDNUM_11 ADT_DEVID_BOARDNUM_11
DEVID_BOARDNUM_12 ADT_DEVID_BOARDNUM_12
DEVID_BOARDNUM_13 ADT_DEVID_BOARDNUM_13
DEVID_BOARDNUM_14 ADT_DEVID_BOARDNUM_14
DEVID_BOARDNUM_15 ADT_DEVID_BOARDNUM_15
DEVID_BOARDNUM_16 ADT_DEVID_BOARDNUM_16

DEVID_CHANNELTYPE_GLOBALS ADT_DEVID_CHANNELTYPE_GLOBALS
DEVID_CHANNELTYPE_1553 ADT_DEVID_CHANNELTYPE_1553
DEVID_CHANNELTYPE_A429 ADT_DEVID_CHANNELTYPE_A429

DEVID_CHANNELNUM_01 ADT_DEVID_CHANNELNUM_01
DEVID_CHANNELNUM_02 ADT_DEVID_CHANNELNUM_02
DEVID_CHANNELNUM_03 ADT_DEVID_CHANNELNUM_03
DEVID_CHANNELNUM_04 ADT_DEVID_CHANNELNUM_04
DEVID_CHANNELNUM_05 ADT_DEVID_CHANNELNUM_05
DEVID_CHANNELNUM_06 ADT_DEVID_CHANNELNUM_06
DEVID_CHANNELNUM_07 ADT_DEVID_CHANNELNUM_07
DEVID_CHANNELNUM_08 ADT_DEVID_CHANNELNUM_08
DEVID_CHANNELNUM_09 ADT_DEVID_CHANNELNUM_09
DEVID_CHANNELNUM_10 ADT_DEVID_CHANNELNUM_10
DEVID_CHANNELNUM_11 ADT_DEVID_CHANNELNUM_11
DEVID_CHANNELNUM_12 ADT_DEVID_CHANNELNUM_12
DEVID_CHANNELNUM_13 ADT_DEVID_CHANNELNUM_13
DEVID_CHANNELNUM_14 ADT_DEVID_CHANNELNUM_14
DEVID_CHANNELNUM_15 ADT_DEVID_CHANNELNUM_15
DEVID_CHANNELNUM_16 ADT_DEVID_CHANNELNUM_16

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

341

DEVID_BANK_01 ADT_DEVID_BANK_01
DEVID_BANK_02 ADT_DEVID_BANK_02
DEVID_BANK_03 ADT_DEVID_BANK_03
DEVID_BANK_04 ADT_DEVID_BANK_04

SUCCESS ADT_SUCCESS
FAILURE ADT_FAILURE
ERR_MEM_MAP_SIZE ADT_ERR_MEM_MAP_SIZE
ERR_NO_DEVICE ADT_ERR_NO_DEVICE
ERR_CANT_OPEN_DEV ADT_ERR_CANT_OPEN_DEV
ERR_DEV_NOT_INITED ADT_ERR_DEV_NOT_INITED
ERR_DEV_ALREADY_OPEN ADT_ERR_DEV_ALREADY_OPEN
ERR_UNSUPPORTED_BACKPLANE ADT_ERR_UNSUPPORTED_BACKPLANE
ERR_UNSUPPORTED_PRODTYPE ADT_ERR_UNSUPPORTED_PRODTYPE
ERR_UNSUPPORTED_CHANNELTYPE ADT_ERR_UNSUPPORTED_CHANNELTYPE
ERR_CANT_OPEN_DRIVER ADT_ERR_CANT_OPEN_DRIVER
ERR_CANT_SET_DRV_OPTIONS ADT_ERR_CANT_SET_DRV_OPTIONS
ERR_CANT_GET_DEV_INFO ADT_ERR_CANT_GET_DEV_INFO
ERR_INVALID_BOARD_NUM ADT_ERR_INVALID_BOARD_NUM
ERR_INVALID_CHANNEL_NUM ADT_ERR_INVALID_CHANNEL_NUM
ERR_DRIVER_READ_FAIL ADT_ERR_DRIVER_READ_FAIL
ERR_DRIVER_WRITE_FAIL ADT_ERR_DRIVER_WRITE_FAIL
ERR_DEVICE_CLOSE_FAIL ADT_ERR_DEVICE_CLOSE_FAIL
ERR_DRIVER_CLOSE_FAIL ADT_ERR_DRIVER_CLOSE_FAIL
ERR_KP_OPEN_FAIL ADT_ERR_KP_OPEN_FAIL
ERR_ENET_NO_PORT_AVAILABLE ADT_ERR_ENET_NO_PORT_AVAILABLE
ERR_ENET_READ_FAIL ADT_ERR_ENET_READ_FAIL
ERR_ENET_WRITE_FAIL ADT_ERR_ENET_WRITE_FAIL
ERR_ENET_NOTRUNNING ADT_ERR_ENET_NOTRUNNING
ERR_ENET_INVALID_SIZE ADT_ERR_ENET_INVALID_SIZE
ERR_ENET_SENDFAIL ADT_ERR_ENET_SENDFAIL
ERR_ENET_SELECTFAIL ADT_ERR_ENET_SELECTFAIL
ERR_ENET_SELECTTIMEOUT ADT_ERR_ENET_SELECTTIMEOUT
ERR_ENET_BADSEQNUM ADT_ERR_ENET_BADSEQNUM
ERR_ENET_SRVSTSFAIL ADT_ERR_ENET_SRVSTSFAIL
ERR_ENET_BADPRODUCTID ADT_ERR_ENET_BADPRODUCTID

ERR_BAD_INPUT ADT_ERR_BAD_INPUT
ERR_MEM_TEST_FAIL ADT_ERR_MEM_TEST_FAIL
ERR_MEM_MGT_NO_INIT ADT_ERR_MEM_MGT_NO_INIT
ERR_MEM_MGT_INIT ADT_ERR_MEM_MGT_INIT
ERR_MEM_MGT_NO_MEM ADT_ERR_MEM_MGT_NO_MEM
ERR_BAD_DEV_TYPE ADT_ERR_BAD_DEV_TYPE
ERR_RT_FT_UNDEF ADT_ERR_RT_FT_UNDEF
ERR_RT_SA_UNDEF ADT_ERR_RT_SA_UNDEF
ERR_RT_SA_CDP_UNDEF ADT_ERR_RT_SA_CDP_UNDEF
ERR_IQ_NO_NEW_ENTRY ADT_ERR_IQ_NO_NEW_ENTRY
ERR_NO_BCCB_TABLE ADT_ERR_NO_BCCB_TABLE
ERR_BCCB_ALREADY_ALLOCATED ADT_ERR_BCCB_ALREADY_ALLOCATED
ERR_BCCB_NOT_ALLOCATED ADT_ERR_BCCB_NOT_ALLOCATED
ERR_PB_BUFFER_FULL ADT_ERR_BUFFER_FULL

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

342

ERR_TIMEOUT ADT_ERR_TIMEOUT
ERR_BAD_CHAN_NUM ADT_ERR_BAD_CHAN_NUM
ERR_BITFAIL ADT_ERR_BITFAIL
ERR_DEVICEINUSE ADT_ERR_DEVICEINUSE
ERR_NO_TXCB_TABLE ADT_ERR_NO_TXCB_TABLE
ERR_TXCB_ALREADY_ALLOCATED ADT_ERR_TXCB_ALREADY_ALLOCATED
ERR_TXCB_NOT_ALLOCATED ADT_ERR_TXCB_NOT_ALLOCATED
ERR_PBCB_TOOMANYPXPS ADT_ERR_PBCB_TOOMANYPXPS
ERR_NORXCHCVT_ALLOCATED ADT_ERR_NORXCHCVT_ALLOCATED
ERR_NO_DATA_AVAILABLE ADT_ERR_NO_DATA_AVAILABLE

DEVICEINIT_FORCEINIT ADT_L1_API_DEVICEINIT_FORCEINIT
DEVICEINIT_NOMEMTEST ADT_L1_API_DEVICEINIT_NOMEMTEST
DEVICEINIT_NOKP ADT_L1_API_DEVICEINIT_NOKP
DEVICEINIT_ROOTPERESET ADT_L1_API_DEVICEINIT_ROOTPERESET

M1553_BC_CB_CSR_HALTONERROR
BC_CB_CSR_HALTONERROR

ADT_L1_1553_BC_CB_CSR_HALTONERROR

M1553_BC_CB_CSR_BUSA
BC_CB_CSR_BUSA

ADT_L1_1553_BC_CB_CSR_BUSA

M1553_BC_CB_CSR_BUSB
BC_CB_CSR_BUSB

ADT_L1_1553_BC_CB_CSR_BUSB

M1553_BC_CB_CSR_STARTFRAME
BC_CB_CSR_STARTFRAME

ADT_L1_1553_BC_CB_CSR_STARTFRAME

M1553_BC_CB_CSR_ENDFRAME
BC_CB_CSR_ENDFRAME

ADT_L1_1553_BC_CB_CSR_ENDFRAME

M1553_BC_CB_CSR_SCHEDTIMING
BC_CB_CSR_SCHEDTIMING

ADT_L1_1553_BC_CB_CSR_SCHEDTIMING

M1553_BC_CB_CSR_WAITFORTRG
BC_CB_CSR_WAITFORTRG

ADT_L1_1553_BC_CB_CSR_WAITFORTRG

M1553_BC_CB_CSR_GENEXTTRG
BC_CB_CSR_GENEXTTRG

ADT_L1_1553_BC_CB_CSR_GENEXTTRG

M1553_BC_CB_CSR_INTMSGCOMP
BC_CB_CSR_INTMSGCOMP

ADT_L1_1553_BC_CB_CSR_INTMSGCOMP

M1553_BC_CB_CSR_ADDRBRANCH
BC_CB_CSR_ADDRBRANCH

ADT_L1_1553_BC_CB_CSR_ADDRBRANCH

M1553_BC_CB_CSR_WAITFORTRG
BC_CB_CSR_WAITFORTRG

ADT_L1_1553_BC_CB_CSR_WAITFORTRG

M1553_BC_CB_CSR_CDPBRANCHONLY
BC_CB_CSR_CDPBRANCHONLY

ADT_L1_1553_BC_CB_CSR_CDPBRANCHONLY

M1553_BC_CB_CSR_DELAYONLY
BC_CB_CSR_DELAYONLY

ADT_L1_1553_BC_CB_CSR_DELAYONLY

M1553_BC_CB_CSR_BRNCHONVALUE
BC_CB_CSR_BRNCHONVALUE

ADT_L1_1553_BC_CB_CSR_BRNCHONVALUE

M1553_BC_CB_CSR_BRNCHRETURN
BC_CB_CSR_BRNCHRETURN

ADT_L1_1553_BC_CB_CSR_BRNCHRETURN

M1553_BC_CB_CSR_TYPE_NOP
BC_CB_CSR_TYPE_NOP

ADT_L1_1553_BC_CB_CSR_TYPE_NOP

M1553_BC_CB_CSR_TYPE_BCRT
BC_CB_CSR_TYPE_BCRT

ADT_L1_1553_BC_CB_CSR_TYPE_BCRT

M1553_BC_CB_CSR_TYPE_RTBC
BC_CB_CSR_TYPE_RTBC

ADT_L1_1553_BC_CB_CSR_TYPE_RTBC

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

343

M1553_BC_CB_CSR_TYPE_RTRT
BC_CB_CSR_TYPE_RTRT

ADT_L1_1553_BC_CB_CSR_TYPE_RTRT

M1553_BC_CB_CSR_TYPE_MCDATA
BC_CB_CSR_TYPE_MCDATA

ADT_L1_1553_BC_CB_CSR_TYPE_MCDATA

M1553_BC_CB_CSR_TYPE_MCNODATA
BC_CB_CSR_TYPE_MCNODATA

ADT_L1_1553_BC_CB_CSR_TYPE_MCNODATA

M1553_BC_NO_NEXT_MSG
BC_NO_NEXT_MSG

ADT_L1_1553_BC_NO_NEXT_MSG

M1553_BC_CSR_RUN ADT_L1_1553_BC_CSR_RUN
M1553_BC_CSR_STOPPED ADT_L1_1553_BC_CSR_STOPPED
M1553_BC_CSR_FRMOFLOW ADT_L1_1553_BC_CSR_FRMOFLOW
M1553_BC_CSR_STOPONOFLOW ADT_L1_1553_BC_CSR_STOPONOFLOW
M1553_BC_CSR_EN_SUBFRAMES ADT_L1_1553_BC_CSR_EN_SUBFRAMES
M1553_BC_CSR_INTONFRMOFLOW ADT_L1_1553_BC_CSR_INTONFRMOFLOW
M1553_BC_CSR_INTONSTOP ADT_L1_1553_BC_CSR_INTONSTOP
M1553_BC_CSR_INTONRETRYCMPLT ADT_L1_1553_BC_CSR_INTONRETRYCMPLT

M1553_CDP_CONTROL_TXERRINJ ADT_L1_1553_CDP_CONTROL_TXERRINJ
M1553_CDP_CONTROL_INTERR ADT_L1_1553_CDP_CONTROL_INTERR
M1553_CDP_CONTROL_INTNOERR ADT_L1_1553_CDP_CONTROL_INTNOERR
M1553_CDP_CONTROL_INTCMPTRUE ADT_L1_1553_CDP_CONTROL_INTCMPTRUE
M1553_CDP_CONTROL_LEDONCMPLT ADT_L1_1553_CDP_CONTROL_LEDONCMPLT
M1553_CDP_CONTROL_TRGOUTERR ADT_L1_1553_CDP_CONTROL_TRGOUTERR
M1553_CDP_CONTROL_TRGOUTNOERR ADT_L1_1553_CDP_CONTROL_TRGOUTNOERR
M1553_CDP_CONTROL_TRGOUTCMPTR ADT_L1_1553_CDP_CONTROL_TRGOUTCMPTR
M1553_CDP_CONTROL_CDPCMP ADT_L1_1553_CDP_CONTROL_CDPCMP
M1553_CDP_CONTROL_FRCDWCNUM ADT_L1_1553_CDP_CONTROL_FRCDWCNUM
M1553_CDP_CONTROL_FRCDWCON ADT_L1_1553_CDP_CONTROL_FRCDWCON

M1553_CDP_STATUS_MSGWC ADT_L1_1553_CDP_STATUS_MSGWC
M1553_CDP_STATUS_BUSAB ADT_L1_1553_CDP_STATUS_BUSAB
M1553_CDP_STATUS_TWOBUSERR ADT_L1_1553_CDP_STATUS_TWOBUSERR
M1553_CDP_STATUS_STSWRNGADD ADT_L1_1553_CDP_STATUS_STSWRNGADD
M1553_CDP_STATUS_NORESP ADT_L1_1553_CDP_STATUS_NORESP
M1553_CDP_STATUS_WCERR ADT_L1_1553_CDP_STATUS_WCERR
M1553_CDP_STATUS_PARERR ADT_L1_1553_CDP_STATUS_PARERR
M1553_CDP_STATUS_BITERR ADT_L1_1553_CDP_STATUS_BITERR
M1553_CDP_STATUS_SYNCERR ADT_L1_1553_CDP_STATUS_SYNCERR
M1553_CDP_STATUS_NOERR ADT_L1_1553_CDP_STATUS_NOERR
M1553_CDP_STATUS_CMPTRUE ADT_L1_1553_CDP_STATUS_CMPTRUE
M1553_CDP_STATUS_SPURMSG ADT_L1_1553_CDP_STATUS_SPURMSG
M1553_CDP_STATUS_BCRTMSG ADT_L1_1553_CDP_STATUS_BCRTMSG
M1553_CDP_STATUS_RTBCMSG ADT_L1_1553_CDP_STATUS_RTBCMSG
M1553_CDP_STATUS_RTRTMSG ADT_L1_1553_CDP_STATUS_RTRTMSG
M1553_CDP_STATUS_MCMSG ADT_L1_1553_CDP_STATUS_MCMSG
M1553_CDP_STATUS_BRDCSTMSG ADT_L1_1553_CDP_STATUS_BRDCSTMSG

GLOBAL_CSR ADT_L1_GLOBAL_CSR
GLOBAL_CSR_CLRTT ADT_L1_GLOBAL_CSR_CLRTT

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

344

GLOBAL_CSR_SETTT ADT_L1_GLOBAL_CSR_SETTT
GLOBAL_CSR_IRIG_LATCH ADT_L1_GLOBAL_CSR_IRIG_LATCH
GLOBAL_CSR_IRIG_DETECT ADT_L1_GLOBAL_CSR_IRIG_DETECT
GLOBAL_CSR_IRIG_LOCK ADT_L1_GLOBAL_CSR_IRIG_LOCK
GLOBAL_CSR_FRCTRG ADT_L1_GLOBAL_CSR_FRCTRG
GLOBAL_CSR_EC_SRCIN_485 ADT_L1_GLOBAL_CSR_EC_SRCIN_485
GLOBAL_CSR_EC_SRCIN_TTL ADT_L1_GLOBAL_CSR_EC_SRCIN_TTL
GLOBAL_CSR_EC_SRCOUT_485 ADT_L1_GLOBAL_CSR_EC_SRCOUT_485
GLOBAL_CSR_EC_SRCOUT_TTL ADT_L1_GLOBAL_CSR_EC_SRCOUT_TTL
GLOBAL_CSR_EC_FRQOUT_1MHZ ADT_L1_GLOBAL_CSR_EC_FRQOUT_1MHZ
GLOBAL_CSR_EC_FRQOUT_5MHZ ADT_L1_GLOBAL_CSR_EC_FRQOUT_5MHZ
GLOBAL_CSR_EC_FRQOUT_10MHZ ADT_L1_GLOBAL_CSR_EC_FRQOUT_10MHZ
GLOBAL_CSR_LED1ON ADT_L1_GLOBAL_CSR_LED1ON
GLOBAL_CSR_LED2ON ADT_L1_GLOBAL_CSR_LED2ON

GLOBAL_INTPENDING ADT_L1_GLOBAL_INTPENDING
GLOBAL_TRIGGERCSR ADT_L1_GLOBAL_TRIGGERCSR
GLOBAL_SGLEDISCSTS ADT_L1_GLOBAL_SGLEDISCSTS
GLOBAL_SGLEDISCCTL ADT_L1_GLOBAL_SGLEDISCCTL
GLOBAL_DIFFDISCSTS ADT_L1_GLOBAL_DIFFDISCSTS
GLOBAL_DIFFDISCCTL ADT_L1_GLOBAL_DIFFDISCCTL
GLOBAL_I2CCTL ADT_L1_GLOBAL_I2CCTL
GLOBAL_I2CSTS ADT_L1_GLOBAL_I2CSTS
GLOBAL_I2C_TS_FPGA_ADDR ADT_L1_GLOBAL_I2C_TS_FPGA_ADDR
GLOBAL_I2C_TS_XCVR_ADDR ADT_L1_GLOBAL_I2C_TS_XCVR_ADDR

M1553_PE_ROOT_CSR PE_ROOT_CSR ADT_L1_1553_PE_ROOT_CSR
M1553_PECSR_HWINTON
PECSR_HWINTON

ADT_L1_1553_PECSR_HWINTON

M1553_PECSR_BCAST PECSR_BCAST ADT_L1_1553_PECSR_BCAST
M1553_PECSR_INTBUS PECSR_INTBUS ADT_L1_1553_PECSR_INTBUS
M1553_PECSR_MRT PECSR_MRT ADT_L1_1553_PECSR_MRT
M1553_PECSR_SGON PECSR_SGON ADT_L1_1553_PECSR_SGON
M1553_PECSR_CLKTRGON
PECSR_CLKTRGON

ADT_L1_1553_PECSR_CLKTRGON

M1553_PECSR_FRCTRGIN
PECSR_FRCTRGIN

ADT_L1_1553_PECSR_FRCTRGIN

M1553_PECSR_FRCTRGOUT
PECSR_FRCTRGOUT

ADT_L1_1553_PECSR_FRCTRGOUT

M1553_PECSR_RDIRIGTM
PECSR_RDIRIGTM

ADT_L1_1553_PECSR_RDIRIGTM

M1553_PECSR_ZEROTT PECSR_ZEROTT ADT_L1_1553_PECSR_ZEROTT
M1553_PECSR_SETTT PECSR_SETTT ADT_L1_1553_PECSR_SETTT
M1553_PECSR_READTT PECSR_READTT ADT_L1_1553_PECSR_READTT
M1553_PECSR_USE_EC PECSR_USE_EC ADT_L1_1553_PECSR_USE_EC
M1553_PECSR_FRQIN_1MHZ
PECSR_FRQIN_1MHZ

ADT_L1_1553_PECSR_EC_FRQIN_1MHZ

M1553_PECSR_FRQIN_5MHZ
PECSR_FRQIN_5MHZ

ADT_L1_1553_PECSR_EC_FRQIN_5MHZ

M1553_PECSR_FRQIN_10MHZ
PECSR_FRQIN_10MHZ

ADT_L1_1553_PECSR_EC_FRQIN_10MHZ

M1553_PECSR_RS485_TRIG_IN ADT_L1_1553_PECSR_RS485_TRIG_IN

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

345

PECSR_RS485_TRIG_IN
M1553_PECSR_RS485_TRIG_OUT
PECSR_RS485_TRIG_OUT

ADT_L1_1553_PECSR_RS485_TRIG_OUT

M1553_PECSR_BUS_B_ONLY
PECSR_BUS_B_ONLY

ADT_L1_1553_PECSR_BUS_B_ONLY

M1553_PECSR_BUS_A_ONLY
PECSR_BUS_A_ONLY

ADT_L1_1553_PECSR_BUS_A_ONLY

M1553_PECSR_BITFAIL_INT
PECSR_BITFAIL_INT

ADT_L1_1553_PECSR_BITFAIL_INT

M1553_PECSR_RUNIBIT PECSR_RUNIBIT ADT_L1_1553_PECSR_RUNIBIT
M1553_PECSR_CHAN_RESET
PECSR_CHAN_RESET

ADT_L1_1553_PECSR_CHAN_RESET

M1553_IQP_TYPESEQ_SEQNUM ADT_L1_1553_IQP_TYPESEQ_SEQNUM
M1553_IQP_TYPESEQ_SG ADT_L1_1553_IQP_TYPESEQ_SG
M1553_IQP_TYPESEQ_PB ADT_L1_1553_IQP_TYPESEQ_PB
M1553_IQP_TYPESEQ_BIT ADT_L1_1553_IQP_TYPESEQ_BIT
M1553_IQP_TYPESEQ_INTVLTMR ADT_L1_1553_IQP_TYPESEQ_INTVLTMR
M1553_IQP_TYPESEQ_BCCB ADT_L1_1553_IQP_TYPESEQ_BCCB
M1553_IQP_TYPESEQ_BCFRMOVR ADT_L1_1553_IQP_TYPESEQ_BCFRMOVR
M1553_IQP_TYPESEQ_BCSTOP ADT_L1_1553_IQP_TYPESEQ_BCSTOP
M1553_IQP_TYPESEQ_BCRETRY ADT_L1_1553_IQP_TYPESEQ_BCRETRY
M1553_IQP_TYPESEQ_BCCDP ADT_L1_1553_IQP_TYPESEQ_BCCDP
M1553_IQP_TYPESEQ_RTCDP ADT_L1_1553_IQP_TYPESEQ_RTCDP
M1553_IQP_TYPESEQ_BMCDP ADT_L1_1553_IQP_TYPESEQ_BMCDP

M1553_BIT_ENCDECFAIL ADT_L1_1553_BIT_ENCDECFAIL
M1553_BIT_MEMTESTFAIL ADT_L1_1553_BIT_MEMTESTFAIL
M1553_BIT_PROCFAIL ADT_L1_1553_BIT_PROCFAIL
M1553_BIT_TTAGFAIL ADT_L1_1553_BIT_TTAGFAIL
M1553_BIT_TIMEOUTFAIL ADT_L1_1553_BIT_TIMEOUTFAIL
M1553_BIT_LOOPFAIL ADT_L1_1553_BIT_LOOPFAIL
M1553_BIT_POSTFAIL ADT_L1_1553_BIT_POSTFAIL
M1553_BIT_PBITFAIL ADT_L1_1553_BIT_PBITFAIL
M1553_BIT_IBITFAIL ADT_L1_1553_BIT_IBITFAIL
M1553_BIT_POSTINPROG ADT_L1_1553_BIT_POSTINPROG
M1553_BIT_PBITINPROG ADT_L1_1553_BIT_PBITINPROG
M1553_BIT_IBITINPROG ADT_L1_1553_BIT_IBITINPROG

A429_TXCB_NO_NEXT_TXCB ADT_L1_A429_TXCB_NO_NEXT_TXCB

A429_BIT_MEMTESTFAIL ADT_L1_A429_BIT_MEMTESTFAIL
A429_BIT_PROCFAIL ADT_L1_A429_BIT_PROCFAIL
A429_BIT_TTAGFAIL ADT_L1_A429_BIT_TTAGFAIL
A429_BIT_POSTFAIL ADT_L1_A429_BIT_POSTFAIL
A429_BIT_PBITFAIL ADT_L1_A429_BIT_PBITFAIL
A429_BIT_IBITFAIL ADT_L1_A429_BIT_IBITFAIL
A429_BIT_POSTINPROG ADT_L1_A429_BIT_POSTINPROG
A429_BIT_PBITINPROG ADT_L1_A429_BIT_PBITINPROG
A429_BIT_IBITINPROG ADT_L1_A429_BIT_IBITINPROG

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

346

A429_IQP_TYPESEQ_SEQNUM ADT_L1_A429_IQP_TYPESEQ_SEQNUM
A429_IQP_TYPESEQ_CHNUM ADT_L1_A429_IQP_TYPESEQ_CHNUM
A429_IQP_TYPESEQ_SG ADT_L1_A429_IQP_TYPESEQ_SG
A429_IQP_TYPESEQ_CVTRXP ADT_L1_A429_IQP_TYPESEQ_CVTRXP
A429_IQP_TYPESEQ_BIT ADT_L1_A429_IQP_TYPESEQ_BIT
A429_IQP_TYPESEQ_TXPBCB ADT_L1_A429_IQP_TYPESEQ_TXPBCB
A429_IQP_TYPESEQ_TXPBSTOP ADT_L1_A429_IQP_TYPESEQ_TXPBSTOP
A429_IQP_TYPESEQ_TXPBXP ADT_L1_A429_IQP_TYPESEQ_TXPBXP
A429_IQP_TYPESEQ_MCRXP ADT_L1_A429_IQP_TYPESEQ_MCRXP
A429_IQP_TYPESEQ_CHRXP ADT_L1_A429_IQP_TYPESEQ_CHRXP
A429_IQP_TYPESEQ_MSKRXP ADT_L1_A429_IQP_TYPESEQ_MSKRXP

A429_TXCB_CONTROL_STOPONTXBCOMP ADT_L1_A429_TXCB_CONTROL_STOPONTXBCOMP
A429_TXCB_CONTROL_INTONTXBCOMP ADT_L1_A429_TXCB_CONTROL_INTONTXBCOMP

A429_TXP_CONTROL_DELAYONLY ADT_L1_A429_TXP_CONTROL_DELAYONLY
A429_TXP_CONTROL_TRIGIN ADT_L1_A429_TXP_CONTROL_TRIGIN
A429_TXP_CONTROL_TRIGOUT ADT_L1_A429_TXP_CONTROL_TRIGOUT
A429_TXP_CONTROL_INTERRUPT ADT_L1_A429_TXP_CONTROL_INTERRUPT
A429_TXP_CONTROL_PARITYODD ADT_L1_A429_TXP_CONTROL_PARITYODD
A429_TXP_CONTROL_PARITYON ADT_L1_A429_TXP_CONTROL_PARITYON

A429_RXP_CONTROL_TRGOUT ADT_L1_A429_RXP_CONTROL_TRGOUT
A429_RXP_CONTROL_INTERRUPT ADT_L1_A429_RXP_CONTROL_INTERRUPT
A429_RXP_CONTROL_DECERROR ADT_L1_A429_RXP_CONTROL_DECERROR

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

347

Using AltaAPI with TenAsys INtime™

Alta has tested the AltaAPI with the TenAsys INtime operating system (real-time
extension to Microsoft Windows) running ONLY in shared mode (regular Windows XP
mode/partition). There are no changes required and follow the regular Windows XP
install procedures discussed earlier in this section. As of this release, Alta has not
developed or tested the AltaAPI in the Real-Time (RTOS) mode of INtime.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

348

Using AltaAPI with IntervalZero RTX™

Alta has tested the AltaAPI with the IntervalZero RTX operating system (real-time
extension to Microsoft Windows).

The following installation and build instructions apply to RTX 2009, which is no longer
supported by IntervalZero. However, these instructions apply equally to RTX 2011 and
RTX 2012. Use this as a guide for implementation on these versions of RTX.

Installation
First perform the normal Windows installation of the AltaAPI software and install the Alta
board in the system. Verify proper operation by running AltaView and/or by building and
running the AltaAPI example programs under Windows.

Configure the Alta Board as an RTX Device
You must convert the Alta hardware to an RTX Device before you can use it with RTX.
NOTE THAT YOU MUST HAVE THE ALTA BOARD INSTALLED IN THE SYSTEM
UNDER WINDOWS.

1. From the Windows Start menu, click All Programs > IntervalZero > RTX 2009
> RTX Properties to access the RTX Properties control panel.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

349

From the RTX Properties control panel select the Hardware tab.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

350

2. In the Devices area, click on the Settings button to configure plug and play
devices to support RTX. This shows the current plug and play devices on your
system.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

351

3. Right-click on the node for the Alta board you want to convert, then click Add

RTX INF Support. This will edit the RtxPnp.inf file to support the selected
device. In this example we are converting the Alta PCCD-1553.

4. Click the Apply button.
5. Click the Device Manager button to open the Windows Device Manager.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

352

6. Locate the device you just added RTX INF support for – note that Alta boards
should show up under Jungo. Right-click on the device and select Update
Driver.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

353

7. The Found New Hardware Wizard should now be displayed. If it asks if it can

connect to Windows Update to Search for Software, select No, not this time and
click Next. Select Install from a list or specific location and click Next.
Choose the option Don’t search, I will choose the driver to install and click
Next.

8. From the Model List select the device that is RTX Supported and click Next.
When the wizard completes, click Finish. You may have to restart your
computer for the changes to apply.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

354

9. The device should now be displayed in the Windows Device Manager under Rtx
Drivers.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

355

10. Go back to the RTX Properties control panel. In the PnP Device Settings
window, click the Refresh button. The device should now show up under RTX
rather than Windows.

Configuration for Interrupts
At this point the Alta board is usable with RTX (either for Windows executables or for
RTX rtss executables). However, the board may or may not be usable with hardware
interrupts under RTX. If your application will require interrupt support you will
need to find a PCI slot that gives you an IRQ that is not shared with any other PCI
devices. This is explained in the IntervalZero white paper on “Working with Hardware
Resource Limitations” – a PDF copy of this white paper is provided in the RTX folder on
the Alta Software distribution CD. Note that Alta boards ONLY support Line-Based
interrupts; Alta boards do not have the capability to support MSI interrupts.

Setup an RTX Application Project in MSVS
The RTX installation adds new project types to Microsoft Visual Studio to support
building applications that will build either as Windows executables (exe files) or RTX
executables (rtss files).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

356

1. In MSVS, create a new project. Under Project Types, select Visual C++. From
the Templates area, select Rtx Application. Enter the desired project name (or
go with the default “RtxApp1”).

2. Click on the OK button.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

357

3. You will now see the RTX Application Wizard. Click the Next button.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

358

4. You will now see the Application Settings window. Under Add C Run-time
support, select Multithreaded C Run-time support. Click on the Next button.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

359

5. You will now see the Program Settings window. You can use the defaults here,
no change. Click on the Finish button.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

360

6. The wizard will create a folder for your project – in this example this folder is
called “RtxApp1”. Now you need to copy the AltaAPI files to the project folder.
The AltaAPI Installation CD provides a RTX folder. This folder contains a PDF
white paper (on hardware resources – for interrupt configuration as mentioned
earlier) and three folders for the AltaAPI Layer 0 (ADT_L0), the AltaAPI Layer 1
(ADT_L1), and example programs (ADT_L1_Examples), as shown below.

7. Copy all files from the ADT_L0 folder to your project folder – in our example this
is (MSVS Project Path)\RtxApp1\RtxApp1.

8. Copy all files from the ADT_L1 folder to your project folder – in our example this
is (MSVS Project Path)\RtxApp1\RtxApp1.

9. Copy ONE of the example programs to your project folder. The
ADT_L1_Examples folder contains folders for A429 Examples and 1553
Examples. Let’s assume you are installing a PCI-1553 board, so we will use one
of the 1553 examples. Copy the ADT_L1_1553_ex_bc1.c file to your RTX
application project folder (this is a very simple 1553 bus controller example that
will send a single message on the bus).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

361

10. Add all these files to your project. The solution explorer should look something
like this.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

362

11. The file ADT_L1_1553_ex_bc1.c is your main program and all the other files are
AltaAPI files. When you get to writing your own code you will replace the
example program with your own main program. Before you build and run the
program, edit the ADT_L1_1553_ex_bc1.c file and check the #define for DEVID.
This tells the software what kind of Alta board you are using – if this is wrong you
will get an error (error 3) when the program tries to initialize the device. The
constants used to define the DEVID are defined in the ADT_L0.h file. The
example below shows the correct setting for a PCI-1553 board.

12. You can select Debug and Release configurations for both Windows and for
RTX. First build a Win32 Debug configuration and test the program. If
everything works in Windows you can then build a RTSS executable that you can
run from the RTX Task Manager.

NOTE: Most of the example programs use simple I/O with printf and scanf statements.
This will work fine when run on Windows, but when running as RTSS keyboard input
with scanf is not supported by RTX. If you run the example programs as RTSS the
scanf statements will not wait for user input, they will just be skipped.

RTX 2012 Execution Note
In RTX 2012, IntervalZero introduced a utility called “Stamp Tool”, which is used to
“stamp” an RTSS application or RTDLL with a validated license string before execution
of the RTSS application or use of the RTDLL.

If you do not properly stamp the application/DLL, you will receive this error message:

"This application was not built with a valid license"

The Stamp Tool utility is described in the RTX 2012 documentation and can be found in
%RTXDIR%\bin\.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

363

Appendix B – Linux
This appendix discusses installation under the Linux operating system.
Alta uses the Jungo WinDriver tools (version 11.5.0) for Linux device drivers.

Linux distribution/kernel versions
The AltaAPI has been tested on Fedora Core 9 (32 and 64 bit) with the standard
“vanilla” 2.6.29.6 kernel on an x86 system. This was tested on 32-bit and 64-bit Ubuntu
10.04 LTS and 12.04 LTS. This was tested on 32-bit and 64-bit Ubuntu 11.10. The
current Linux driver has been used successfully on RedHat, Concurrent RedHawk,
Fedora Core, and Ubuntu Linux distributions. Alta does not currently support Linux
on PowerPC.

The 64-bit driver only supports 64-bit applications. This driver does not support 32-bit
applications running on 64-bit Linux.

Alta supports standard kernels up through version 3.13. Standard LINUX kernels are
available at http://www.kernel.org/.

Alta does not support special kernel builds, embedded Linux kernels, etc. We
use the Jungo WinDriver package for Linux drivers and only support Linux
systems compatible with the Jungo driver.

Supported Alta Products
All Alta products are supported for x86 Linux. This includes all PCI, PCI Express, and
ENET products for MIL-STD-1553 and A429.

Supported C compilers
The AltaAPI was built with the GNU C compiler. No other compilers are specifically
supported. Alta does not support Linux cross-compiler environments (for
example, BlueCat Linux from LynuxWorks).

Prior to installation
Linux device driver modules are compiled with the kernel header files. To install a
module into the kernel, the module must be built with the same version.h as the kernel.

Some distributions provide a compiled kernel without the file version.h. If so, you must
install the Linux source code, build the kernel, and then build AltaDriver and the PlugIn
module with the kernel version.h.

http://www.kernel.org/�

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

364

If the Linux source code is installed there will be “linux-2.6.29.6” or a corresponding
entry in the /usr/src directory (on Fedora this is /usr/src/kernels). If the source code is
not installed, either install the source code or reinstall Linux with the source code.

On Ubuntu you can install the kernel source with the following command:
 sudo apt-get install linux-source

You must also create a symbolic link called linux to the kernel source directory in
/usr/src. For Ubuntu:
 sudo ln –s linux-headers-<kernel_version> linux
For Fedora/Red Hat:
 su
 <enter root password>
 ln –s linux-<kernel_version> linux

Install version.h

The file version.h is created when you compile the kernel and is located in
/usr/src/linux_version/include/linux. If you do not have the version.h file, follow
these steps to install the file:

1. Type:
[YourDirectory]$ make xconfig

2. Save the configuration by choosing Save and Exit.

3. Type:
[YourDirectory]$ make dep

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

365

Installing AltaAPI
Shut down the system and install the Alta board. Turn on the system. Copy the file
ADT_Linux_x86_32(64).x.x.x.x.tar for 32-bit (or 64 bit) (where .x.x.x.x is the current
release version) from the Linux directory on the installation CD to an appropriate
directory on your system. Extract the files with the following command:

[YourDirectory]$ tar –xvf ADT_Linux_x86_32(64).x.x.x.x.tar

This will create a directory called ADT_API_x.x.x.x containing four subdirectories,
altadriver_installation, ADT_PlugIn, Test, Source and Examples. The
altadriver_installation directory contains kernel driver files. The ADT_PlugIn directory
contains kernel plug-in files. The Test directory contains the Layer 0 and Layer 1
shared object files, selected example programs, and a sample makefile that builds an
example program into an executable file. The Source directory contains the AltaAPI
Layer 1 source files along with a makefile to build the Layer 1 shared object file. The
Example directory contains the source files for 1553 and A429 example programs.

Building and installing AltaDriver
Go to the driver installation directory:

[YourDirectory]$ cd ADT_API_x.x.x.x/altadriver_installation/redist

Run the configuration script. This will create the makefile needed to build and install the
driver:

[redist]$./configure --disable-usb-support

Build the driver:

[redist]$ make

Install the driver (as super user):

[redist]$ su
[redist]# make install

The driver is installed with a corresponding /dev/altadriver node.

Change the protections on the /dev key node for the driver to allow users to access it:

[redist]# chmod 666 /dev/altadriver
[redist]# exit

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

366

Caution: Since /dev/altadriver gives direct hardware access to user programs, it may
compromise kernel stability on multi-user Linux systems. Access to this file should be
restricted to trusted users.

Note: The “make install” step runs the wdreg utility to load altadriver.o/.ko. To
automatically load the driver on boot, run the wdreg script from the /etc/rc.d/rc.local
file:

 (path to redist directory)/wdreg altadriver
 chmod 666 /dev/altadriver

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

367

Building and Installing the Kernel PlugIn
The Kernel Plug-in is required for using hardware interrupts from the Alta boards. If
you do not install the kernel plug-in then you must use the “extended options”
initialization function (ADT_L1_1553_InitDefault_ExtendedOptions for 1553 devices,
ADT_L1_A429_InitDefault_ExtendedOptions for A429 devices) with the option
ADT_L1_API_DEVICEINIT_NOKP.

Note: altadriver must be installed prior to installing the kernel PlugIn. Attempting to
install altadriver after the kernel plug-in will result in a system error.

Go to the kernel plug-in installation directory:

[YourDirectory]$ cd ADT_API_x.x.x.x/ADT_PlugIn/configure

Run the configuration script. This will create the makefile needed to build and install the
PlugIn:

[configure]$./configure --disable-usb-support

Build the PlugIn:

[configure]$ make

Install the PlugIn:

[configure]$ su
[configure]# make install
[configure]# exit

Dynamically Loading Plugin:
The Kernel Plugin can be dynamically loaded by adding the command "insmod path\
kp_altadriver_module.ko " to the target Linux boot file (/etc/rc.d/rc.local). After the Plugin is
compiled it is located in the Linux directory under the configure directory.

 i.e. “insmod /ADT_PlugIn/configure/LINUX.2.6.29.6/kp_altadriver_module.ko”

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

368

Building the AltaAPI Example Programs
Go to the ADT_API_x.x.x.x/Test directory:

[YourDirectory]$ cd ADT_API_x.x.x.x /Test

A sample makefile is provided for the ADT_L1_1553_ex_rt1.c example program. This
makefile can be copied and edited to create make files for other example programs or
for your own test programs.

If you are using an A429 device rather than a 1553 device, you can use the example
program ADT_L1_A429_ex_rxtx1.c as a starting point. You will have to edit the
makefile to specify the new example program.

The example programs are located in the ADT_API_x.x.x.x/Examples directory. There
is a directory and associated readme for both 1553 and A429 Examples.

NOTE: You MUST edit the example program to change the #define for DEVID to match
your product type (PCI1553, PMC1553, PC104P1553, etc.).

The AltaAPI Layer 0 module is distributed as a shared library in the file
libADT_L0_Linux_x86_32(64).so.x.x.x.x (where .x.x.x.x is the release version
number). You must create a symbolic link to this file:

 [Test]$ ln –sf libADT_L0_Linux_x86_32(64).so.x.x.x.x libADT_L0_Linux_x86_32(64).so

The AltaAPI Layer 1 module is also distributed as a shared library in the file
libADT_L1_Linux_x86_32(64).so.x.x.x.x (where .x.x.x.x is the release version
number). Note that this shared object file can be built from source in the /Source
directory. You must create a symbolic link to this file:

 [Test]$ ln –sf libADT_L1_Linux_x86_32(64).so.x.x.x.x libADT_L1_Linux_x86_32(64).so

Add this directory to the library load path so the compiler can find the shared library:

[Test]$ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

Note: If you reboot the system this change to the library load path is lost. One way to
re-establish this load path on boot-up is to put the export command in the .bashrc file:

export LD_LIBRARY_PATH=(path to ADT_L1_test directory):$LD_LIBRARY_PATH

If you do not do the wdreg command and path setting automatically on boot-up, you can
do it manually as follows:

1. Go to the /ADT_API_x.x.x.x/altadriver_installation/redist directory and type
the following commands:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

369

[redist]$ su
Password: (enter root password)
[redist]# ./wdreg altadriver
[redist]# chmod 666 /dev/altadriver
[redist]# exit

2. Go to the /Alta_API_x.x.x.x/Test directory and type the following commands:

[ADT_L1_test]$ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

3. Now you can build and run applications using altadriver and the kernel plug-in

module.

NOTE: You MUST edit the example program to change the #define for DEVID to match
your product type (PCI1553, PMC1553, PC104P1553, etc.).

Build the API and example program:

[Test]$ make

Run the example program:

[Test]$./test_rt1

You should see output similar to this:

********** ADT L1 API Example Program **********

Initializing . . . Success.
Checking Protocol Engine (PE) and API versions . . . Success.
 PE version = 0600
 L0 API version = 2.6.0.0
 L1 API version = 2.6.0.0
Initializing RT1 . . . Success.
Enabling RT1 . . . Success.
Starting RT operation . . . Success.

Input Q to quit or anything else to read the RT 1 default CDP buffer.

You can use another device as a bus controller to send messages to RT 1 to verify that
the board is working.

If you see error 3 on initialization, this indicates that the specified device could not be
found in the system. The usual reason for this is failure to edit the example program to
specify the appropriate product type in the Device ID (DEVID). As mentioned
previously:
NOTE: You MUST edit the example program to change the #define for DEVID to match
your product type (PCI1553, PMC1553, PC104P1553, etc.).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

370

If you see error 19 on initialization, this indicates that the kernel plug-in is not installed.
Refer to the section on “Building and Installing the Kernel PlugIn”.

Now you can try other example programs or write your own programs.

NOTE ON MSI INTERRUPTS:
PCI Express devices use Message Signalled Interrupts (MSI). If you have two (or
more) independent applications controlling different channels of the same PCIe board,
and two or more of these applications use interrupts, this will not work – will crash the
system (because the last application to enable interrupts overwrites the setting made by
the others).
You CAN use independent applications on different channels of the same PCIe board if
no more than one of them uses interrupts.
You CAN use interrupts on multiple channels of the same PCIe board if all of the
channels using interrupts are controlled by the same application.
You CANNOT use interrupts on multiple channels of the same PCIe board if the
channels using interrupts are controlled by separate independent applications.

Uninstalling the Kernel PlugIn and Driver
You can uninstall the plug-in and driver as follows (as root/superuser):

First verify that the Alta modules are present.
 # /sbin/lsmod

You should see two Alta modules – kp_altadriver_module is the kernel plug-in and
altadriver is the Alta driver.

Unload the kernel plug-in module.
 # /sbin/rmmod kp_altadriver_module

Unload the Alta driver module.
 # /sbin/modprobe –r altadriver

If you have added to your /etc/rc.d/rc.local file to load the Alta driver/plug-in on boot, edit
this file to remove your additions.

Remove the WinDriver shared object file.
 For 32-bit Linux, this is /usr/lib/libwdapiXXXX.so.
 For 64-bit Linux, this is /usr/lib64/libwdapiXXXX.so.
Note that the “XXXX” is the Jungo WinDriver version, will be something like 1140 (for
version 11.4.0).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

371

Appendix C – VxWorks

This appendix discusses installation and operation under Wind River VxWorks
operating systems.

Supported VxWorks Versions
Alta currently supports VxWorks 5.X and VxWorks 6.x. This has been tested with
VxWorks 5.5 on an AMPRO Core Module 800 (Pentium M) with an Alta PC104P-1553
board. This has been tested with VxWorks 6.3 on a Mercury VPA-200 PPC SBC with
an Alta PMC-1553 board and an Alta PMC-A429 board. This has been tested with
VxWorks 6.5 with an Alta PMC-1553 board on a Curtis Wright 185. This has been
tested with VxWorks 6.9 with an Alta PMC-1553, ENET-1553, ENET-A429, and PMC-
MA4 on an Emerson MVME3100.

You may have to modify the Layer 0 API functions to be compatible with other VxWorks
systems, platforms, and/or Board Support Packages.

See the file VxWorks_readme.txt in the ADT_L0 directory for information about
memory map calls used on different systems. For most systems, the Alta memory
mapping and interrupt handling can use standard VxWorks supplied PCI functions.
Some CPUs (especially x86) seem to want their supplier-specific memory mapping
calls. This file provides examples of our experience with different vendors.

Supported Alta Products
The PMC-1553, PC104P-1553, PMC-MA4, and the PMC-A429 are the only Alta
products we have tested VxWorks. Contact Alta if you need to use products not listed
here.

Supported Development Environments
Alta uses the Tornado 2.2 development environment to build for VxWorks 5.5 targets.
The Workbench development environment is used for VxWorks 6.x.

Hardware Installation
Shut down the system and install the Alta board. You can use the pciDeviceShow
command from the VxWorks console to verify that the board is seen by the system.
The Alta PCI Vendor ID is 0xAD00. Once you have located the Alta board, you can use
the pciHeaderShow command to see the PCI configuration registers – you will need to
know the BAR0 and BAR2 base addresses assigned to the board.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

372

System Configuration
Modify the sysLib.c file to add an entry to the sysPhysMemDesc table for the Alta
board(s) being installed. Rebuild after modifying the file.

Each board requires 512 Bytes of PCI BAR0 address space and 8MB of PCI BAR2
address space. Note that the addresses and memory size must be aligned to the page
size (4KB in the example below).

The physical PCI address should match the BAR0 and BAR2 values in the PCI
configuration registers as shown by pciHeaderShow. In this example, the physical and
virtual addresses are the same (VxWorks 5.5) – this can be different for other
systems/BSPs.

{ /* Alta 1553 Board – 8 MB for BAR2 */
(void *) 0xFE000000, /* Physical PCI Address (4KB aligned) */
(void *) 0xFE000000, /* Virtual Address (4KB aligned) */
0x800000, /* Size in bytes (4KB aligned) */
/* initial state mask */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,
/* initial state */
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT
},

{ /* Alta 1553 Board – 512 B for BAR0 */
(void *) 0xFE8FF000, /* Physical PCI Address (4KB aligned) */
(void *) 0xFE8FF000, /* Virtual Address (4KB aligned) */
0x1000, /* Virtual Address (4KB aligned) */
 /* initial state mask */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE,
/* initial state */
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT
}

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

373

Software Installation
Copy the directory “Alta VxWorks” from the VxWorks directory on the installation CD to
an appropriate directory on your system (where the Tornado/Workbench development
environment will be used to build code for your VxWorks target). This directory contains
the VxWorks Layer 0 API files, the Layer 1 API files, and the Layer 1 example
programs.

Testing the Installation and L0 API
The Layer 0 API is the fundamental interface to the board for memory mapping and
interrupt handling. The Layer 0 API consists of the following files:
 ADT_L0.h
 ADT_L0_VxWorks.c

NOTE: The ADT_L0_VxWorks.c file contains byte/word swapping macros that are
used differently for Big-Endian (PPC) or Little-Endian (x86) systems. You need to
modify this file to define these for your system. Define the constant X86_PLATFORM if
you are using an x86 system. Comment out this #define statement if you are using a
PPC system. You may also have to modify the ADT_L0_VxWorks.c file for the call to
enable interrupts – make the appropriate call for your BSP.

A simple test program is provided to verify memory mapping of the board:
 ADT_L0_test1.c

Use the Tornado/Workbench environment to build the ADT_L0_test1.c program. This
program requires the ADT_L0_VxWorks.c file and the ADT_L0.h file.

When you run the ADT_L0_test1 program it will attempt to map memory to the board
and will read and print several words from memory. The “Board-Level Align Check
Word” value should be 0x12345678. If you do not see this value then there is a
memory mapping problem or there is a byte/word swapping problem. If you see
swapped bytes/words the byte/word swapping macros in ADT_L0_VxWorks.c are not
defined correctly for your system (see note above). If you see other unexpected values
(or if the test program crashes or otherwise fails to run) then the problem may be
incorrect physical or virtual memory settings.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

374

Building and Testing the L1 API and Example Programs
After you have verified that the Layer 0 API is functioning properly you can then add the
Layer 1 API and Layer 1 example programs.

The Layer 0 API consists of the following files:
 ADT_L0.h
 ADT_L0_VxWorks.c

The Layer 1 API consists of the following files:
 ADT_L1.h
 ADT_L1_General.c
 ADT_L1_BoardGlobal.c
 ADT_L1_MemMgmt.c
 ADT_L1_BIT.c
 ADT_L1_INT.c
 ADT_L1_1553_General.c
 ADT_L1_1553_INT.c
 ADT_L1_1553_RT.c
 ADT_L1_1553_BC.c
 ADT_L1_1553_BM.c
 ADT_L1_1553_PB.c
 ADT_L1_1553_SG.c
 ADT_L1_A429_General.c
 ADT_L1_A429_INT.c
 ADT_L1_A429_RX.c
 ADT_L1_A429_TX.c
 ADT_L1_A429_RX_MC.c
 ADT_L1_A429_PB.c
 ADT_L1_A429_SG.c

In addition to the API files listed above, you will need one of the Layer 1 example
programs. A good initial test (for 1553 boards) is to start with a simple Remote Terminal
program:

ADT_L1_1553_ex_rt1.c
A good initial test (for A429 boards) is to start with a simple transmit/receive program:

ADT_L1_A429_ex_rxtx1.c

Note that the “standard” example programs use “main()” for the main program entry
point. VxWorks applications typically use a main function name other than “main()”, so
when moving the standard example programs to VxWorks you should change “main()”
to something else (like “test_rt1()”, for example).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

375

You will need to edit the #define for the DEVID in the example program to match the
type of Alta board you are using. For example, the following specifies the Alta PMC-
1553 board type:
#define DEVID (ADT_PRODUCT_PMC1553 | ADT_DEVID_BOARDNUM_01 |
ADT_DEVID_CHANNELTYPE_1553 |ADT_DEVID_CHANNELNUM_01)

The example program can now be compiled with the API functions to generate an
executable program for the VxWorks system.

If you see error 3 on initialization, this indicates that the specified device could not be
found in the system. The usual reason for this is failure to edit the example program to
specify the appropriate product type in the Device ID (DEVID). As mentioned above:
NOTE: You MUST edit the example program to change the #define for DEVID to match
your product type (PCI1553, PMC1553, PC104P1553, etc.).

When you have the example programs running successfully on your system, you can
then expand on the example code for your own applications.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

376

Appendix D – LynxOS

This appendix discusses installation and operation under LynuxWorks LynxOS
operating systems.

Supported LynxOS Versions
Alta currently supports LynxOS 4.0. This has been tested on an ORION Technologies
CPC7525 IBM PowerPC 750GX with an Alta PMC-1553 board. The driver currently
only supports one board.

You may have to modify the driver or Layer 0 API functions to be compatible with other
LynxOS systems.

Supported Alta Products
The PMC-1553 is the only Alta product supported for LynxOS.

Supported C Compilers
Alta uses the GNU C compiler (gcc). We do not provide any specific support for other
compilers.

Hardware Installation
Shut down the system and install the Alta board. Boot LynxOS on your processor
board, login to your system as root, on the shell prompt type:

user name: root
bash-2.02# drm_stat

This will display information on all the PCI devices in the system. Look for the Alta
Vendor ID (0xAD00) to identify any Alta boards. Make sure the BAR0 and BAR2 have
valid (non-zero) virtual (Vaddr) and physical (Paddr) addresses for the board.

Software Installation
Copy the file “Alta_LynxOS.tar” from the LynxOs directory on the installation CD to an
appropriate directory on your system. Extract this tar file – this will create a directory
with the LynxOS driver, Layer 0 API files, the Layer 1 API files, and the Layer 1 example
programs. This will contain five directories – alta_1553_examples, drivers.bsp,
devices.bsp, dheaders, cfg.ppc

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

377

System Configuration
We use a static driver installation so that the driver is automatically installed when the
system boots-up. There are four system directories where files need to be added and
the driver and device files built into the kernel.

1. Change directory to the sys directory where LynxOS was installed. For example
/opt/lynxos/4.0.0/ppc/sys

2. The following directories are BSP/platform specific and may be different on your
system.

a. Change directory to /opt/lynxos/4.0.0/ppc/sys/drivers.xxx (for example,
/drivers.oti_cpc7525)

b. Copy the alta_pmc_1553 directory from the Alta drivers.bsp directory into
this directory (/drivers.xxx).

c. Change directory to /opt/lynxos/4.0.0/ppc/sys/devices.xxx.
d. Copy all files from the Alta devices.bsp directory.
e. Change directory to /opt/lynxos/4.0.0/ppc/sys/dheaders
f. Copy all files from the Alta dheaders directory.
g. Change directory to /opt/lynxos/4.0.0/ppc/sys/cfg.ppc
h. Copy all files from the Alta cfg.ppc directory.

3. Build the driver
a. Change directory to /opt/lynxos/4.0.0/ppc/sys
b. Setup the build environment. For example, type

bash-2.02# . ./SETUP.bash
c. Change directory to /opt/lynxos/4.0.0/ppc/sys/drivers.xxx/alta_pmc_1553
d. Type “make” to build the driver.
e. Change directory to /opt/lynxos/4.0.0/ppc/sys/devices.xxx
f. Edit the Makefile in this directory and add the following: alta_info.x to the

end of the line for DEVICE_FILES_all. Save the Makefile, type “make” to
build the device tree.

4. Build the Kernel, statically link the driver, create /dev node
a. Change directory to opt/lynxos/4.0.0/ppc/sys/lynx.os (this should put you

into the kernel BSP directory).
b. Edit the CONFIG.TBL file. At the bottom of the file, add

I:alta_pmc.cfg
c. Rebuild the LynxOS kernel.
d. Now the new kernel is ready to be loaded and the driver will be installed

and ready to use after boot-up.
e. After booting the new kernel, login as root and at the shell prompt, type in

“devices”. You should see the device name “alta_pmc”. Type in “drivers”
and you should also see the driver name “alta_pmc”.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

378

Building and Testing the L0 and L1 API and Example
Programs
After you have verified that the Layer 0 API is functioning properly you can then add the
Layer 1 API and Layer 1 example programs.

The Layer 0 API consists of the following files:
 ADT_L0.h
 ADT_L0_LynxOS.c

The Layer 1 API consists of the following files:
 ADT_L1.h
 ADT_L1_General.c
 ADT_L1_BoardGlobal.c
 ADT_L1_MemMgmt.c
 ADT_L1_BIT.c
 ADT_L1_INT.c
 ADT_L1_1553_General.c
 ADT_L1_1553_INT.c
 ADT_L1_1553_RT.c
 ADT_L1_1553_BC.c
 ADT_L1_1553_BM.c
 ADT_L1_1553_PB.c
 ADT_L1_1553_SG.c

In addition to the API files listed above, you will need one of the Layer 1 example
programs. A good initial test is to start with a simple Remote Terminal program:

ADT_L1_1553_ex_rt1.c

The example program can now be compiled with the API functions to generate an
executable program for the LynxOS system. A sample makefile (make_rt1) is provided
to build the ADT_L1_1553_ex_rt1.c program with the API. This generates an
executable that will setup the Alta board as RT 1. Use another device (such as
AltaView running on a different board/channel) as the BC and BM to communicate with
the RT on the 1553 bus.

You can now try other example programs and develop your own applications for the
Alta 1553 board.

Note on Interrupts
The LynxOS driver and L0 API currently implements interrupt handling for 1553
Channel 1 only. The driver provides an ioctl command (0x70) to wait for interrupt. The
L0 API provides a corresponding function to wait for interrupt – this function does not
return (blocks) until the interrupt is received. The LynxOS L0 API does not implement

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

379

the attach/detach interrupt handler functions and does not do a “call-back” to the users
interrupt handler function. An interrupt-driven application would setup the board then go
into a loop where it waits for interrupt, processes interrupts (call user interrupt handler
function), and repeats.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

380

Appendix E – GHS INTEGRITY

This appendix discusses installation and operation under Green Hills Software
INTEGRITY operating systems.

Supported INTEGRITY Versions
Alta currently supports INTEGRITY 5.0.10. This has been tested on a SBS CK5 SBC
with an Alta PMC-1553 board. The driver has also been tested with an Alta PMC-A429
board.

You may have to modify the Layer 0 API functions to be compatible with other
INTEGRITY systems, platforms, and/or Board Support Packages.

Supported Alta Products
The PMC-1553 and the PMC-A429 are the only Alta products supported for
INTEGRITY. Contact Alta if you need to use other products with this environment.

Supported Development Environments
Alta used the MULTI development environment (version 4.2.4) to build for INTEGRITY
targets.

Hardware Installation
Shut down the system and install the Alta board. You may use the pci busxxx
command at BIOS startup to verify proper hardware installation and find the bus that the
device is installed on. The Alta PCI Vendor ID is 0xAD00.

Kernel/Driver Configuration
Add the AltaDT_Driver.c to the Board Support Packages (BSP) and build the BSP
library. If you must make any changes to the driver, rebuild after modifying the file.

Each Alta board requires 512 Bytes of PCI BAR0 address space and 8MB of PCI BAR2
address space. Note that the addresses and memory size must be aligned to the page
size – if the page size is larger than 512 bytes then reserve the page size for BAR0.

Software Installation
Copy the directory “GHS_INTEGRITY” from the GHS_Integrity directory on the
installation CD to an appropriate directory on your system (where the Multi development
environment will be used to build code for your INTEGRITY target). This directory
contains the INTEGRITY Layer 0 API files, the Layer 1 API files, the Layer 1 example
programs, and example MULTI projects.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

381

Testing the Installation and L0 API
The Layer 0 API is the fundamental interface to the board for memory mapping and
interrupt handling. In MULTI you can access the Layer 0 API test, which consists of the
following INTEGRITY project located in:
../GHS_Integrity/L0 API/ADT_Test_Projects/L0_ex_test1/default.gpj

When ../default.gpj is running correctly INTEGRITY will attempt to map memory to the
board and will read and print several words from memory. The “Board-Level Align
Check Word” value should be 0x12345678. If the numerals are out of order then there
is a byte/word swapping problem. If you see other unexpected values (or if the test
program crashes or otherwise fails to run) then the problem may be incorrect physical or
virtual memory settings.

Building and Testing the L1 API and Example Programs
After you have verified that the Layer 0 API is functioning properly you can then add the
Layer 1 API and Layer 1 example programs.

The Layer 0 API consists of the following files:
 ADT_L0.h
 ADT_L0_INTEGRITY.c

The Layer 1 API consists of the following files:
 MIL-STD-1553
 ADT_L1_1553_General.c
 ADT_L1_1553_INT.c

ADT_L1_1553_BC.c
 ADT_L1_1553_RT.c
 ADT_L1_1553_BM.c
 ADT_L1_1553_PB.c
 ADT_L1_1553_SG.c

ARINC
ADT_L1_A429_General.c
ADT_L1_A429_INT.c
ADT_L1_A429_TX.c
ADT_L1_A429_RX.c
ADT_L1_A429_RX_MC.c
ADT_L1_A429_PB.c
ADT_L1_A429_SG.c

General
ADT_L1.h
ADT_L1_BoardGlobal.c

 ADT_L1_BIT.c

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

382

 ADT_L1_General.c
 ADT_L1_INT.c
 ADT_L1_MemMgmt.c

In addition to the API files listed above, you will need one of the Layer 1 example
programs. For 1553, a good initial test is to start with a simple Remote Terminal
program:

ADT_L1_1553_ex_rt1.c

For A429, a good initial test is to start with a simple RX/TX program:
ADT_L1_A429_ex_rxtx1.c

NOTE: ADT_L1_1553_ex_rt1.c, and ADT_L1_A429_ex_rxtx1.c are already built in to
an example projects:

../GHS_Integrity/L1 API/ADT_Test_Projects/M1553/L1_1553_ex_rt1/default.gpj

and
../GHS_Integrity/L1 API/ADT_Test_Projects/A429/L1_A429_ex_rxtx1/default.gpj

If you are using ADT_L1_1553_ex_rt1.c to test a 1553 device, use another device (such
as AltaView running on a different board/channel) as the BC and BM to communicate
with the RT on the 1553 bus.

If you are using ADT_L1_A429_ex_rxtx1.c to test an A429 device, this program will
send labels on TX channel 1 and receive them on RX channel 1 so it can talk to itself
without an external connection to another device.

Once you have verified that your installation is working with one of these example
programs you can then run other example programs and develop your own applications
using Alta API.

NOTE: The current Alta driver for GHS INTEGRITY does not support hardware
interrupts. Interrupt functionality can be used through software polled interrupts.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

383

Appendix F – Solaris
Alta uses the Jungo WinDriver tools (version 9.01) for Solaris device drivers.

Supported Environments
Alta supports Solaris on Sun SPARC 64-bit systems and Intel x86 32-bit systems.
Alta does not support Solaris on Intel x86 64-bit systems. Alta does not at present
provide specific support for other development environments. The Alta API was tested
on the following platforms.

SPARC 64-bit Platform: Sun SPARC Ultra 60 workstation (PCI only) running Solaris
10 (Sun OS 5.10) using the GNU gcc compiler version 3.4.6.

SPARC 64-bit Platform: Sun SPARC Ultra 25 workstation (PCI and PCI Express)
running Solaris 10 (Sun OS 5.10) using the GNU gcc compiler version 3.4.6. The Sun
M-series (M3000, M4000, M5000) systems ARE NOT COMPATIBLE WITH ALTA
PRODUCTS AND ARE NOT SUPPORTED BY ALTA.

Intel x86 32-bit Platform: x86 32-bit system (PCI and PCI Express) running Solaris 10
(Sun OS 5.10) using the GNU gcc compiler version 3.4.6.

This appendix contains information for installing and running on SPARC 64-bit systems
followed by information for installing and running on Intel x86 32-bit systems.

Supported Alta Products
The following Alta products have been tested with Solaris:
 PMC-1553, PCI-1553, PCIE1L-1553
Contact Alta if you need to use products not listed here.

Installation on SPARC 64-bit systems
The 64-bit driver only supports 64-bit applications. This driver does not support 32-bit
applications running on 64-bit Solaris.

Shutdown the system and install the Alta board. Power the system up. Copy the file
ADT_Solaris_10_64.x.x.x.x.tar (where x.x.x.x is the current release version) from the
Solaris_10 directory on the Alta installation CD to an appropriate directory on your
system. Extract the source files with the following command :

[YourDirectory]# tar –xvf ADT_Solaris_10_64.x.x.x.x.tar

This will create a directory called ADT_API_X.X.X.X containing three subdirectories:
source, Driver, and examples. The Source directory contains the Layer 1 AltaAPI
source files along with sample make files to build them. It also contains the

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

384

ADT_L0_Sol64.so.x.x.x.x Layer 0 shared library which provides access to the kernel
level driver.

The Driver directory contains the kernel level driver files. Of interest to the user are the
script files install_altadriver and remove_altadriver which are used to install and
uninstall the kernel level driver module altadriver.

The Examples directory contains various M1553 and A429 API example programs. See
the readme file in the examples folder for more information on the individual examples.

Installing the Driver on SPARC 64-bit systems

Installation of altadriver should be performed by the system administrator logged in as
root, or with root privileges, since the altadriver installation process includes installation
of the kernel driver module altadriver.

If not logged in as root enter superuser mode before running the driver installation
script:

[YourDirectory/Driver]# su

Run the install_altadriver installation script, change group and user IDs, and set permissions
as described below.

 [YourDirectory/Driver]# exit

Go to the driver installation directory:

[YourDirectory]# cd /Driver/altadriver_installation

Install the WinDriver kernel level driver, altadriver, by running the install_altadriver
installation script. For PCI devices, specify the vendor and device IDs of your PCI
device in the installation command (where <vid> represents the device’s vendor ID and
<did> represent’s the device’s device ID):

[YourDirectory/Driver/altadriver_installation]# ./install_altadriver <vid>,<did>

For example, Alta’s Vendor ID is AD00 and the Alta PMC-1553 board device ID is 10
(Alta PCI-1553 device ID is 14, PCIE1L-1553 is 20). You can use the “prtconf”
command to list the devices in the system. Alta boards should show up under one of
the PCI nodes:
 pci, instance #3
 pciad00,14, instance #0 (driver not attached)
or
 pci, instance #3

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

385

 pciexad00,20, instance #0 (driver not attached)

If your board shows up in the system as “pciad00,<did>” then use the following syntax
with the ./install_altadriver command (in this example we use a device ID of 14 for a
PCI-1553 board, if you are using a different board type change this to the appropriate
device ID value):

[YourDirectory/Driver/altadriver_installation]# ./install_altadriver ad00,14

If your board shows up in the system as “pciexad00,<did>” then use the following
syntax with the ./install_altadriver command (in this example we use a device ID of 20
for a PCIE1L-1553 board, if you are using a different board type change this to the
appropriate device ID value:

[YourDirectory/Driver/altadriver_installation]# ./install_altadriver exad00,20

You can now run the “prtconf” command again and the output for the board should no longer say “(driver
not attached)”.
 pci, instance #3
 pciexad00,20, instance #0

Caution: Since altadriver gives direct hardware access to user programs, it may
compromise kernel stability on multi-user Solaris systems. Please restrict access to
trusted user. Change the user and group IDs and give read/write permissions of the
device file, altadriver, depending on how you wish to allow users to access hardware
through the device node.

Change user and group IDs as required

Set read/write permissions:
[YourDirectory/Driver/altadriver_installation]# chmod 666 /kernel/drv/sparcv9/altadriver

Note: The altadriver is generally located in the /kernel/drv/sparcv9/ directory, but may be
located in a different directory on some systems.

To uninstall the WinDriver kernel level driver altadriver run the uninstall script
remove_altadriver. The kernel plugin must be uninstalled prior to uninstalling the
driver:

[YourDirectory/Driver/altadriver_installation]# ./remove_altadriver

Installing the Kernel Plugin on SPARC 64-bit systems
Installation of the Kernel PlugIn should be performed by the system administrator
logged in as root, or with root privileges.

Note: AltaDriver must be installed prior to installing the kernel PlugIn. Attempting to
install AltaDriver after the PlugIn will result in a system error.

Go to the kernel plugin installation directory:

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

386

[YourDirectory]$ cd /Driver/kermode

Type the following commands to install the kernel plugin:

$ cp kp_altadriv.conf /kernel/drv
$ cp kp_altadriv /kernel/drv/sparcv9
$./wdreg kp_altadriv

Note: The kernel plugin is generally located in the /kernel/drv/sparcv9 directory, but may be
located in a different directory on some systems.

To uninstall the kernel plugin, type the following commands. The kernel plugin must be
uninstalled prior to uninstalling the driver :

$ /usr/sbin/rem_drv kp_ altadriv
$ rm /kernel/drv/sparcv9/kp_altadriv
$ rm /kernel/drv/kp_altadriv.conf

Note: The kernel plugin is generally located in the /kernel/drv/sparcv9 directory, but may be
located in a different directory on some systems.

Building and Testing the API and Example Programs on
SPARC 64-bit Systems
You can either build in the provided source folder or create your own test directory for
your working files.

If you create a test directory, copy all the relevant A429 and/or M1553 Layer 1 source
files along with ADT_L0.h and ADT_L1.h to your working directory. A makefile
(make_rt1) is provided for the ADT_L1_1553_ex_rt1.c example program. This make
file can be copied and edited to create make files for other example programs or for
your own test programs. In this example we will build the example program
ADT_L1_1553_ex_rt1.c with the API.

NOTE: You should edit the ADT_L1_1553_ex_rt1.c example program to change the
#define DEVID to match your product type (PMC1553, PCI1553, PCIE1L1553, etc.).

The AltaAPI Layer 0 module is provided as the shared library
ADT_L0_Sol64.so.x.x.x.x where .x.x.x.x is the release version number. You can
rename and copy this file to your test directory, or alternatively you can create a
symbolic link to the file:

[Your_test_dir]$ ln –sf ADT_L0_Sol64.so.x.x.x.x ADT_L0_Sol64.so.

Set the library load path so the compiler can find the shared library:

[Your_test_dir]$ LD_LIBRARY_PATH=/usr/local/lib/sparcv9:/usr/sfw/lib/sparcv9:$LD_LIBRARY_PATH

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

387

Export the library load path:

[Your_test_dir]$ export LD_LIBRARY_PATH

You may need to set the PATH as well:

[Your_test_dir]$ PATH=/usr/local/bin:/usr/sfw/bin:$PATH

Export the path:

[Your_test_dir]$ export PATH

Note: If you reboot the system the changes to the paths are lost. One way to re-
establish this load path on boot-up is to put these commands in the .bashrc file or
appropriate startup script.

Edit the ADT_L1_1553_ex_rt1.c example program. Modify the DEVID definition to
match your Alta board type.

Build the API and example program:

[ADT_L1_test]$ gmake –f make_rt1

If you get errors on gmake, you may have to change the CC and LD path from
/usr/local/bin to /usr/sfw/bin.

Run the example program:

[ADT_L1_test]$./new_ex_rt1

If you get ERROR 3 on the device initialization, this indicates that you do not have the
correct Device ID (DEVID) for your board type. Edit the example program and ensure
that you have the correct DEVID.

If you get ERROR 19 on device initialization, this indicates that the kernel plug-in is not
running. Go to the /Driver/kernmode folder and run the “./wdreg kp_altadriv” command
again.

Note that the error codes 0-999 are defined in the file ADT_L0.h and the error codes
1000-1999 are defined in the file ADT_L1.h.

You are now ready to run other example programs or begin developing your own
application. The example programs provide an excellent starting point for new
applications. Feel free to modify the examples and sample makefile to fit your specific
needs.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

388

Installation on x86 32-bit Systems
Solaris x86 typically installs for 64-bit operation. The Jungo WinDriver tools only
supports 32-bit operation on Solaris x86. You can see your kernel version with the
following command:
 # /usr/bin/isainfo –kv

You can switch to 32-bit mode with the following command:
 # /usr/sbin/eeprom boot-file=”kernel/unix”
After executing this command you must re-boot the system to load the 32-bit kernel.

Shutdown the system and install the Alta board. Power the system up. Copy the file
ADT_Solaris_10_x86_32.x.x.x.x.tar (where x.x.x.x is the current release version) from
the Solaris_10 directory on the Alta installation CD to an appropriate directory on your
system. Extract the source files with the following command :

[YourDirectory]# tar –xvf ADT_Solaris_10_x86_32.x.x.x.x.tar

This will create a directory called ADT_API_X.X.X.X containing three subdirectories:
source, Driver, and examples. The source directory contains the Layer 1 AltaAPI
source files along with sample make files to build them. It also contains the
ADT_L0_Solx86_32.so.x.x.x.x Layer 0 shared library which provides access to the
kernel level driver.

The Driver directory contains the kernel level driver files. Of interest to the user are the
script files install_altadriver and remove_altadriver which are used to install and
uninstall the kernel level driver module altadriver.

The examples folder contains various M1553 and A429 API example programs. See
the readme file in the examples folder for more information on the individual examples.

Installing the Driver on x86 32-bit Systems

Installation of altadriver should be performed by the system administrator logged in as
root, or with root privileges, since the altadriver installation process includes installation
of the kernel driver module altadriver.

If not logged in as root enter superuser mode before running the driver installation
script:

[YourDirectory/Driver]# su

Run the install_altadriver installation script, change group and user IDs, and set permissions
as described below.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

389

 [YourDirectory/Driver]# exit

Go to the driver installation directory:

[YourDirectory]# cd /Driver/altadriver_installation

Install the WinDriver kernel level driver, altadriver, by running the install_altadriver
installation script. For PCI devices, specify the vendor and device IDs of your PCI
device in the installation command (where <vid> represents the device’s vendor ID and
<did> represent’s the device’s device ID):

[YourDirectory/altadriver]# ./install_altadriver <vid>,<did>

For example, Alta’s Vendor ID is AD00 and the Alta PMC-1553 board device ID is 10
(Alta PCI-1553 device ID is 14, PCIE1L-1553 is 20):

For a PMC-1553:

[YourDirectory/ altadriver]# ./install_altadriver ad00,10
For a PCI-1553:

[YourDirectory/ altadriver]# ./install_altadriver ad00,14
For a PCIE1L-1553:

[YourDirectory/ altadriver]# ./install_altadriver ad00,20

NOTE: Enter the command exactly as shown above.

Caution: Since altadriver gives direct hardware access to user programs, it may
compromise kernel stability on multi-user Solaris systems. Please restrict access to
trusted user. Change the user and group IDs and give read/write permissions of the
device file, altadriver, depending on how you wish to allow users to access hardware
through the device node.

Change user and group IDs as required

Set read/write permissions:
[YourDirectory/altadriver]# chmod 666 /kernel/drv/altadriver

Note: The altadriver is generally located in the /kernel/drv/ directory, but may be located in a
different directory on some systems.

To uninstall the WinDriver kernel level driver altadriver run the uninstall script
remove_altadriver. The kernel plugin must be uninstalled prior to uninstalling the
driver.

[YourDirectory/altadriver]# ./remove_altadriver

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

390

Installing the Kernel Plugin on x86 32-bit Systems

Installation of the Kernel PlugIn should be performed by the system administrator
logged in as root, or with root privileges.

Note: AltaDriver must be installed prior to installing the kernel PlugIn. Attempting to
install AltaDriver after the PlugIn will result in a system error.

Go to the kernel plugin installation directory:

[YourDirectory]$ cd /Driver/kermode/solaris

Type the following commands to install the kernel plugin:

$ cp kp_altadriv.conf /kernel/drv
$ cp kp_altadriv /kernel/drv
$./wdreg kp_altadriv

Note: The kernel plugin is generally located in the /kernel/drv/ directory, but may be located in a
different directory on some systems.

To uninstall the kernel plugin, type the following commands. The kernel plugin must be
uninstalled prior to uninstalling the driver:

$ /usr/sbin/rem_drv kp_ altadriv
$ rm /kernel/drv/kp_altadriv
$ rm /kernel/drv/kp_altadriv.conf

Note: The kernel plugin is generally located in the /kernel/drv/ directory, but may be located in a
different directory on some systems.

Building and Testing the API and Example Programs on x86
32-bit Systems

Note: On Intel x86 32-bit systems it is highly recommended to use “gmake” instead of
the standard “make” delivered with Solaris. The example makefiles assume that
“gmake” is being used for compilation. If not, the user must edit the example makefile
for their particular compiler. Alta used GNU compiler version 3.4.6 during API testing.

You can either build in the provided source folder or create your own test directory for
your working files.

If you create a test directory, copy all the relevant A429 and/or M1553 Layer 1 source
files along with ADT_L0.h and ADT_L1.h to your working directory. A makefile
(make_rt1) is provided for the ADT_L1_1553_ex_rt1.c example program. This make
file can be copied and edited to create make files for other example programs or for

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

391

your own test programs. In this example we will build the example program
ADT_L1_1553_ex_rt1.c with the API.

NOTE: You should edit the ADT_L1_1553_ex_rt1.c example program to change the
#define DEVID to match your product type (PMC1553, PCI1553, PCIE1L1553, etc.).

The AltaAPI Layer 0 module is provided as the shared library
ADT_L0_Solx86_32.so.x.x.x.x where .x.x.x.x is the release version number. You can
rename and copy this file to your test directory, or alternatively you can create a
symbolic link to the file:

[Your_test_dir]$ ln –sf ADT_L0_Solx86_32.so.x.x.x.x ADT_L0_Solx86_32.so.

Set your paths so the compiler can find the shared library:

[Your_test_dir]$ PATH=/usr/sfw/bin:$PATH
[Your_test_dir]$ export PATH
[Your_test_dir]$ LD_LIBRARY_PATH=/usr/sfw/lib:$LD_LIBRARY_PATH
[Your_test_dir]$ export LD_LIBRARY_PATH

Note: If you reboot the system this change to the path is lost. One way to re-establish
this load path on boot-up is to put the export command in the .bashrc file or the
appropriate startup script.

Build the API and example program:

[ADT_L1_test]$ gmake –f make_rt1

Run the example program:

[ADT_L1_test]$./new_ex_rt1

If you get ERROR 3 on the device initialization, this indicates that you do not have the
correct Device ID (DEVID) for your board type. Edit the example program and ensure
that you have the correct DEVID.

If you get ERROR 19 on device initialization, this indicates that the kernel plug-in is not
running. Go to the /Driver/kernmode/solaris folder and run the “./wdreg kp_altadriv”
command again.

Note that the error codes 0-999 are defined in the file ADT_L0.h and the error codes
1000-1999 are defined in the file ADT_L1.h.

You are now ready to run other example programs or begin developing your own
application. The example programs provide an excellent starting point for new

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

392

applications. Feel free to modify the examples and sample makefile to fit your specific
needs.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

393

Manual Revision Information
Date Rev Description
11/14/08 E Added Solaris Appendix F.

12/09/08 F Image and Text Clean-up.

2/19/09 F1 Added following functions:

-BC and RT CDPRead/WriteWords Functions.
-ADT_L1_1553_INT_IQ_ReadRawEntry
-ADT_L1_1553_INT_IQ_ReadNewRawEntries
-ADT_L1_A429_INT_IQ_ReadRawEntry
-ADT_L1_A429_INT_IQ_ReadNewRawEntries

3/11/09 F2 -Image and Text Clean-up.
-Added reference to LabVIEW™ ADT_L1_NET20LV.dll (new dll for
LabVIEW users) with new UINT Classes.
-Added mask_value parameter to ADT_L1_1553_SC_ArmTrigger()

8/16/09 F3 -Changed Address
-Added BCCB Read/WriteWords, IRIG Cal, Interval Timer
-Updated Windows Install Appendix
-Minor typo fixes

9/15/09 F4 -General formatting and clean-up. Fixed page numbering problem.
-Updated LabVIEW information in the Windows Appendix A
-Added information on IntervalZero RTX in the Windows App A
-Corrected errors in the Linux Appendix B

10/11/09 F5 -Fixed a few minor problems in the Linux Appendix B
-Added clarification of product ID, rev, and serial number for
ADT_L1_GetBoardInfo.
-Added clarification on Init_ExtendedOptions functions.
-Added paragraph on 1553 Interval Timer in discussion of 1553
interrupt functions.

11/5/09 F6 -Added warning that PCCARD products are not supported for
Windows 2000.
-Added section on LabWindows/CVI in Appendix A.
-Added clarification on supported Linux systems in Appendix B.
-Updated VxWorks documentation in Appendix C.

11/13/09 F7 Major Rewrite of the Layer 1 1553 and ARINC Intro Sections.
Added more overview and examples. Other areas are just minor

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

394

reorganization and information changes.
2/9/10 G Updates for v2.3.0.0 (Appendices A, B and F, Windows, Linux,

Solaris).
3/8/10 G1 Corrected description of ADT_L1_A429_SG_AddVectors. Added

warning about thread-safety for the function
ADT_L1_1553_BM_ReadNewMsgsDMA.

5/31/10 G2 Added description to ADT_L1_A429_TX_Channel_SendLabel
explaining that this function does NOT block until the Label has
finished transmission.
Added a section for Solaris x86 32-bit support.
Added clarification on MSVS project setup in Appendix A.

8/3/10 G3 Added new ARINC TXP diagram Layer 1 API section. Added
description to ADT_L1_A429_TX_Channel_TXPWrite function.

9/16/10 G4 Updates for v2.4.0.0. General cleanup and reformatting. Minor
cleanup in discussion of Windows .NET support. Added information
on 64-bit settings for creating a MSVS project to build the example
programs. Updated Appendix B (Linux), now supports kernels up
through 2.6.35 with WinDriver version 10.21.

11/3/10 G5 Added the functions ADT_L1_A429_IntervalTimerGet and
ADT_L1_A429_IntervalTimerSet. Modified section on L1_NET20 in
Appendix A – now supports hardware interrupts, added more
constants, added .NET example programs.

2/18/11 G6 Added 1553 Branch “Address Only” discussion and
ADT_L1_1553_BC_CB_SetAddressBranchValue function. Added
new ARINC Aperiodic IsRunning and SendAperiodic functions.
Added general 1553 Branching and NOP discussion. Added
Examples for new 1553 branch and changed ARINC rxtx4.c
example for new ARINC aperiodic TXCB method. Clarified
installation on 64-bit Windows in Appendix A. Added information on
ARINC TXCB/TXP Allocation in Layer 1 API Section for ARINC TX.
Updated the CDP data structure diagram. Added constants to
support MPCIE-1553. Corrections to Appendix F (Solaris). Added
warning in ADT_L1_Global_ReadIrigTime function about the
firmware registers being 1 second off, software corrects for this.
Added the functions ADT_L1_1553_IrigLatchedTimeGet and
ADT_L1_A429_IrigLatchedTimeGet. Added a discussion on using
IRIG time. Added a section on ENET Device Programming. Added
a section on Supported Alta Products to each of the appendices for
supported operating systems. Modified Appendix B (Linux) to
account for changes where example programs are now built in the
/Test folder (using the Layer 1 shared object) rather than in the
/Source folder (using the Layer 1 source files).

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

395

5/9/11 G7 Minor clean-up of A429 programming discussion. Added “CSR” and
“SW” to list of acronyms. Minor corrections to Appendix F, Solaris.
Minor correction to discussion of 1553 BC retry operation. Added a
note explaining that reading CDP buffers while the firmware is
processing that buffer results in a CDP Status Word of
0xFFFFFFFF.

7/5/11 G8 Corrected A429 Signal Capture voltage information. Added note in
Solaris appendix stating that Alta does not support the Sun M-series
systems. Corrected third parameter in description of
ADT_L1_A429_TX_Channel_AperiodicSend. Added
ADT_L1_A429_TX_Channel_SendLabelBlock. Modified Appendix
B (Linux) to add “lib” prefix to the shared object files for L0 and L1.

10/31/11 G9 Added constants for PCIE1L-A429, MPCIE-A429, PMCE-1553, and
ENET-A429. Added clarification in description of the function
ADT_L1_A429_TX_Channel_CB_Write.

1/5/12 H1 Added clarification to the description of the functions
ADT_L1_1553_RT_MC_LegalizationRead and
ADT_L1_1553_RT_MC_LegalizationWrite.
Expanded on Intro ENET discussion and ADCP/APMP Overview.

3/7/12 H2 Added L0 error code ADT_ERR_ENET_BADPRODUCTID.
Cleaned up notes on using the NOMEMTEST initialization option.
In Appendix B (Linux), added note that the SGI UV systems are not
supported. Corrections in Appendix F (Solaris).
Added BookMark Discussion: ENET-1553 APMP CDP Format: PE
+ IRIG or Interval Timer Inserts.

3/15/12 H3 Appendix A (Windows) and Appendix B (Linux) – added note on
potential problem when using MSI interrupts with two separate
applications using interrupts on two channels of the same PCIe
board. In Appendix B (Linux) – added note on Ubuntu Linux 11.10
64-bit.

3/26/12 H4 Cleaned up typo in one of the 1553 RT code examples.

9/17/12 H5 General cleanup of minor typos. Fixed typo in one of the A429 code
examples. Corrected typos in function descriptions for
ADT_L1_ENET_SetIpAddr and ADT_L1_ENET_GetIpAddr. Added
the function ADT_L1_Error_to_String. Added clarification to the
discussion of BIT operation. Updated VxWorks appendix. Updated
GHS INTEGRITY appendix. Added clarification of the function
ADT_L1_1553_RT_StatusWrite – cannot change RT Address or ME
bit.

AltaAPI™ Software User’s Manual ● 14301-00000-I4
Alta Data Technologies LLC ● www.altadt.com

396

2/5/13 H6 Added clarification on the function
ADT_L1_1553_RT_GetExternalRTAddr. Added discussion of
ARINC banks and channels. Added clarification to discussion of
ARINC TX programming (add faster labels to the TX list before
slower labels). Added clarification on IRIG YEAR field. Updated
Appendix B (Linux). Updated Appendix A (Windows) with note on
running 32-bit applications on 64-bit Windows.

2/6/13 H7 Updated NAICS Code.

7/18/13 H8 Added explanation of RT handling of BROADCAST messages for
Single-RT and Multiple-RT modes. Updated the ENET Protocols
Section. Corrected parameter description of the RT SA/MC CDP
ReadWords and WriteWords functions. Corrected parameter
description for ADT_L1_GetBoardInfo. Added option bits for
ADT_L1_1553_BM_Config. Updated discussion of ENET Path
Delay.

11/7/13 H9 Minor correction to 1553 CDP diagram. Added ENET devices to list
of tested products in VxWorks, Appendix C. Removed requirement
in Solaris Appendix F to run wdreg after reboot for kernel plugin.
Added constants for PC104P-MA4.

3/20/14 I1 Updated Appendix B (Linux). Added note on 1553 playback.

4/24/14 I2 Added “_pciInfo” functions.

9/17/14

I3 Added thread-safety warning on A429 TX SendLabel and
SendLabelBlock functions.
Appendix D – added section on uninstalling the driver/plug-in (for
Linux).

11/10/14 I4 Updated RTX section. Cleaned up minor grammatical errors.

	Table of Contents
	The AltaAPI Software Model
	Layer 0 API Modules
	Layer 1 API Module
	Layer 2 API Modules
	List of Acronyms

	The Layer 0 API
	Layer 0 API Constants
	The Device Identifier (Device ID – or DEVID)
	#Define Device ID Examples for Layer 1 Programs (from ADT_L0.h):

	Layer 0 API Files
	Layer 0 API Type Definitions
	ADT_L0_UINT32
	ADT_L0_UINT16
	ADT_L0_UINT8
	Error Code Constants
	Low Level Functions
	ADT_L0_AttachIntHandler
	ADT_L0_DetachIntHandler
	ADT_L0_MapMemory
	ADT_L0_MapMemory_pciInfo
	ADT_L0_UnmapMemory
	ADT_L0_msSleep
	ADT_L0_ReadMem16
	ADT_L0_ReadMem32
	ADT_L0_ReadSetupMem32
	ADT_L0_WriteMem16
	ADT_L0_WriteMem32
	ADT_L0_WriteSetupMem32
	ADT_L0_ENET_ADCP_Reset
	ADT_L0_ENET_ADCP_GetStatistics
	ADT_L0_ENET_ADCP_ClearStatistics

	The Layer 1 API
	Channels & Devices – Basic Definition Reviewed
	Table Layer 1 API - 1: ARINC/A429 Device ID (DEVID) Bank Channel Assignments

	Common Layer 1 API Functions & Discussion
	ADT_L1.h File & 1553 or ARINC Quick Reference Guides
	Basic Data Types
	Data Structures

	General Programming Flow
	Initializing and Closing the API
	Advanced Concepts on Device Initialization
	Closing the Device – Last Step of an Application
	Memory Management
	Multi-Threaded Applications

	Built-In-Test (BIT) Operation
	Power-On Self Test
	Initiated BIT
	Periodic BIT
	BIT Status Register

	Using IRIG-B Time
	IRIG Calibration
	Verifying IRIG Lock
	Reading the IRIG time from the Global Device
	Reading the LATCHED IRIG and Internal Time from a 1553/A429 Device
	Converting Internal Time-Stamps to IRIG Time

	ENET Device and Software Overview
	ENET Device Programming: ADCP
	Alta Passive Monitor Protocol (APMP)

	AltaAPI and ENET Programming
	Assigning IP Addresses
	Initialize the Device
	Checking the ADCP Connection Status
	System and Network Performance with ENET Devices
	ENET Performance
	Advanced ENET Auto-Setup and Control without API Control

	ENET Ethernet UDP Protocols
	ALTA DEVICE CONTROL PROTOCOL (ADCP)
	UDP Port Numbers
	ADCP Packet Format
	UDP Port Numbers
	APMP Packet Format
	APMP 1553 CDP Packet Format - CDP
	How to Start/Control 1553 APMP
	ARINC APMP Packet Format
	How to Start/Control ARINC APMP

	MIL-STD-1553 Layer 1 Programming
	1553 (M1553) Device & Protocol Initialization & Closing
	Advance 1553 Initialization Options – Manual Device & Protocol Setup (1553A and Other Non 1553B Variants).
	“RT Live” Initialization – MIL-STD-1760 Startup
	Closing the Device – Last Step of an Application

	Overview of MIL-STD-1553 Functions
	The 1553 Common Data Packet (CDP)
	Error Injection/Detection for Data Words of BC or RT Messages
	Setting Message (CDP) Interrupts, Triggers, etc…

	1553 Bus Monitor Operation
	Figure BM-1: Basic Programming Flow
	BM Filters
	BM Buffer (CDP) Allocation
	BM Control Functions
	BM Message Read Functions

	1553 Remote Terminal Operation
	Figure RT-1: Basic RT Programming Flow
	RT Initialization
	Single RT and Multiple RT Configurations
	BROADCAST Messages – Single RT and Multiple RT
	Allocating and Managing RT/SA and Mode Code Buffers (CDPs)
	RT Command Legalization
	RT Status and Last Command Words
	RT Status Response Time
	Error Injection on the RT Status Word
	RT Control Functions

	1553 Bus Controller (BC) Operation
	Figure BC-1: Basic BC Programming Flow
	Figure BC-2: BCCB Data Structure
	BC Initialization
	Allocating BC Control Blocks (BCCB) and CDP Buffers
	Reading and Writing BC Data (and reviewing message results)
	Defining BC Messages (1553 Message Types)
	BC-RT
	RT-BC
	RT-RT
	Mode Codes without Data
	Mode Codes with Data
	Broadcast BC-RT
	Broadcast RT-RT
	Broadcast Mode Codes without Data
	Broadcast Mode Codes with Data
	Non Transmitting BC Message Types: NOPs, Delays & Branches
	BC Branching – Best Method
	NO Operation (NOP) and Delay Only BC Message Types
	Disabling and Enabling BC Messages (NOP) & Delay Only Message Type
	Note on Inter-Message Gap time & Frame Message Scheduling
	Starting and Stopping the BC & Synchronizing Stop
	BC Frame Operation
	Note on Inter-Message Gap time & Frame Message Scheduling
	Advanced BC Frame Operation
	Aperiodic Messages
	BC Retry Operation
	Error Injection on Command Words

	1553 Playback Operation
	Playback Relative verses Absolute (AT) Time Options
	Playback Start/Stop Control Functions

	1553 Signal Generator Operation
	SG Start/Stop Control Functions

	Signal Capture
	1553 Device Interrupts
	The Interrupt Queue
	General Device Interrupt Functions
	1553 Device Interrupt Functions
	RT Interrupt Info Word
	BC Interrupts
	BCCB Complete verses BCCB CDP Interrupt
	BM CDP Interrupt Info Word

	ARINC 429 Device Operation
	A429 Device Initialization Functions
	A429 Channel Configuration
	Closing the ARINC Device

	A429 Receive (RX) Operation
	Receive Channel Operation
	Multichannel Receive Operation
	Figure ARINC-RX-1: Basic Flow for Channel Level RX
	Label LSB/MSB for ARINC-429 RXPs and TXPs

	A429 Transmit (TX) Operation
	Figure ARINC-TX-1: Basic TX Scheduling API Flow
	Sending Aperiodic TXCB/TXP Label Lists
	Label LSB/MSB for ARINC-429 RXPs and TXPs

	A429 Playback Operation
	Playback Relative verses Absolute (AT) Time Options
	Playback Start/Stop Control Functions

	A429 Signal Generator Operation
	SG Start/Stop Control Functions

	A429 Device Interrupt Functions
	Other ARINC Setup & Usage (ARINC 717)

	Layer 1 API Files
	Layer 1 Example Programs

	Layer 1 API – Key Type Definitions
	ADT_L1_1553_CDP
	ADT_L1_1553_BC_CB
	ADT_L1_A429_RXP
	ADT_L1_A429_TXP
	Label LSB/MSB for ARINC-429 RXPs and TXPs

	ADT_L1_A429_TXCB

	Layer 1 API Constants
	Error Code Constants

	Layer 1 API Functions
	General Functions
	ADT_L1_DevicePresent
	ADT_L1_DevicePresent_pciInfo
	ADT_L1_InitDevice
	ADT_L1_CloseDevice
	ADT_L1_GetBoardInfo
	ADT_L1_GetVersionInfo
	ADT_L1_ProgramBoardFlash
	ADT_L1_ReadDeviceMem32
	ADT_L1_WriteDeviceMem32
	ADT_L1_msSleep
	ADT_L1_ENET_SetIpAddr
	ADT_L1_ENET_GetIpAddr
	ADT_L1_ENET_ADCP_Reset
	ADT_L1_ENET_ADCP_GetStatistics
	ADT_L1_ENET_ADCP_ClearStatistics
	ADT_L1_Error_to_String

	Board Global Functions
	ADT_L1_Global_TimeClear
	ADT_L1_Global_ConfigExtClk
	ADT_L1_Global_I2C_ReadTemp
	ADT_L1_Global_I2C_SetIrigDac
	ADT_L1_Global_I2C_SetVVDac
	ADT_L1_Global_CalibrateIrigDac
	ADT_L1_Global_CalibrateIrigDacOptions
	ADT_L1_Global_ReadIrigTime

	Memory Management Functions
	ADT_L1_InitMemMgmt
	ADT_L1_CloseMemMgmt
	ADT_L1_GetMemoryAvailable
	ADT_L1_MemoryAlloc
	ADT_L1_MemoryFree

	BIT Functions
	ADT_L1_BIT_MemoryTest
	ADT_L1_BIT_InitiatedBIT
	ADT_L1_BIT_PeriodicBIT

	Interrupt Functions
	ADT_L1_INT_HandlerAttach
	ADT_L1_INT_HandlerDetach

	1553 General Functions
	ADT_L1_1553_InitDefault
	ADT_L1_1553_InitDefault_ExtendedOptions
	ADT_L1_1553_GetConfig
	ADT_L1_1553_GetPEInfo
	ADT_L1_1553_InitChannel
	ADT_L1_1553_InitChannelLive
	ADT_L1_1553_SetConfig
	ADT_L1_1553_TimeClear
	ADT_L1_1553_TimeGet
	ADT_L1_1553_TimeSet
	ADT_L1_1553_IrigLatchedTimeGet
	ADT_L1_1553_PBTimeGet
	ADT_L1_1553_PBTimeSet
	ADT_L1_1553_UseExtClk
	ADT_L1_1553_ForceTrgOut
	ADT_L1_1553_SC_ArmTrigger
	ADT_L1_1553_SC_ReadBuffer
	ADT_L1_1553_CDP_Calculate_1760_Checksum
	ADT_L1_1553_IntervalTimerGet
	ADT_L1_1553_IntervalTimerSet

	1553 Interrupt Functions
	ADT_L1_1553_INT_CheckChannelIntPending
	ADT_L1_1553_INT_DisableInt
	ADT_L1_1553_INT_EnableInt
	ADT_L1_1553_INT_GenInt
	ADT_L1_1553_INT_GetIntSeqNum
	ADT_L1_1553_INT_IQ_ReadEntry
	ADT_L1_1553_INT_IQ_ReadNewEntries
	ADT_L1_1553_INT_IQ_ReadRawEntry
	ADT_L1_1553_INT_IQ_ReadNewRawEntries
	ADT_L1_1553_INT_SetIntSeqNum

	1553 Bus Monitor Functions
	ADT_L1_1553_BM_BufferCreate
	ADT_L1_1553_BM_BufferFree
	ADT_L1_1553_BM_CDPRead
	ADT_L1_1553_BM_CDPWrite
	ADT_L1_1553_BM_Clear
	ADT_L1_1553_BM_Config
	ADT_L1_1553_BM_FilterRead
	ADT_L1_1553_BM_FilterWrite
	ADT_L1_1553_BM_ReadNewMsgs
	ADT_L1_1553_BM_ReadNewMsgsDMA
	ADT_L1_1553_BM_Start
	ADT_L1_1553_BM_Stop

	1553 Remote Terminal Functions
	ADT_L1_1553_RT_Close
	ADT_L1_1553_RT_Disable
	ADT_L1_1553_RT_Enable
	ADT_L1_1553_RT_GetExternalRTAddr
	ADT_L1_1553_RT_GetLastCmd
	ADT_L1_1553_RT_GetOptions
	ADT_L1_1553_RT_GetRespTime
	ADT_L1_1553_RT_GetSingleRTAddr
	ADT_L1_1553_RT_Init
	ADT_L1_1553_RT_InjStsWordError
	ADT_L1_1553_RT_MC_CDPAllocate
	ADT_L1_1553_RT_MC_CDPFree
	ADT_L1_1553_RT_MC_CDPRead
	ADT_L1_1553_RT_MC_CDPReadWords
	ADT_L1_1553_RT_MC_CDPWrite
	ADT_L1_1553_RT_MC_CDPWriteWords
	ADT_L1_1553_RT_MC_LegalizationRead
	ADT_L1_1553_RT_MC_LegalizationWrite
	ADT_L1_1553_RT_Monitor
	ADT_L1_1553_RT_ReadStsWordError
	ADT_L1_1553_RT_SA_CDPAllocate
	ADT_L1_1553_RT_SA_CDPFree
	ADT_L1_1553_RT_SA_CDPRead
	ADT_L1_1553_RT_SA_CDPReadWords
	ADT_L1_1553_RT_SA_CDPWrite
	ADT_L1_1553_RT_SA_CDPWriteWords
	ADT_L1_1553_RT_SA_LegalizationRead
	ADT_L1_1553_RT_SA_LegalizationWrite
	ADT_L1_1553_RT_SetOptions
	ADT_L1_1553_RT_SetRespTime
	ADT_L1_1553_RT_SetSingleRTAddr
	ADT_L1_1553_RT_Start
	ADT_L1_1553_RT_StatusRead
	ADT_L1_1553_RT_StatusWrite
	ADT_L1_1553_RT_Stop

	1553 Bus Controller Functions
	ADT_L1_1553_BC_AperiodicIsRunning
	ADT_L1_1553_BC_AperiodicSend
	ADT_L1_1553_BC_CB_CDPAllocate
	ADT_L1_1553_BC_CB_CDPFree
	ADT_L1_1553_BC_CB_CDPRead
	ADT_L1_1553_BC_CB_CDPReadWords
	ADT_L1_1553_BC_CB_CDPWrite
	ADT_L1_1553_BC_CB_CDPWriteWords
	ADT_L1_1553_BC_CB_Read
	ADT_L1_1553_BC_CB_ReadWords
	ADT_L1_1553_BC_CB_Write
	ADT_L1_1553_BC_CB_WriteWords
	ADT_L1_1553_BC_CB_SetAddressBranchValues
	ADT_L1_1553_BC_Close
	ADT_L1_1553_BC_GetFrameCount
	ADT_L1_1553_BC_Init
	ADT_L1_1553_BC_InjCmdWordError
	ADT_L1_1553_BC_IsRunning
	ADT_L1_1553_BC_ReadCmdWordError
	ADT_L1_1553_BC_Start
	ADT_L1_1553_BC_Stop

	1553 Signal Generator Functions
	ADT_L1_1553_SG_AddVectors
	ADT_L1_1553_SG_Configure
	ADT_L1_1553_SG_CreateSGCB
	ADT_L1_1553_SG_Free
	ADT_L1_1553_SG_Start
	ADT_L1_1553_SG_Stop
	ADT_L1_1553_SG_IsRunning
	ADT_L1_1553_SG_WordToVectors

	1553 Playback Functions
	ADT_L1_1553_PB_Allocate
	ADT_L1_1553_PB_CDPWrite
	ADT_L1_1553_PB_Free
	ADT_L1_1553_PB_GetRtResponse
	ADT_L1_1553_PB_IsRunning
	ADT_L1_1553_PB_SetRtResponse
	ADT_L1_1553_PB_Start
	ADT_L1_1553_PB_Stop

	A429 General Functions
	ADT_L1_A429_InitDefault
	ADT_L1_A429_InitDefault_ExtendedOptions
	ADT_L1_A429_InitDevice
	ADT_L1_A429_GetConfig
	ADT_L1_A429_GetPEInfo
	ADT_L1_A429_TimeClear
	ADT_L1_A429_UseExtClk
	ADT_L1_A429_TimeGet
	ADT_L1_A429_TimeSet
	ADT_L1_A429_IrigLatchedTimeGet
	ADT_L1_A429_PBTimeGet
	ADT_L1_A429_PBTimeSet
	ADT_L1_A429_SC_ArmTrigger
	ADT_L1_A429_SC_ReadBuffer
	ADT_L1_A429_IntervalTimerGet
	ADT_L1_A429_IntervalTimerSet

	A429 Interrupt Functions
	ADT_L1_A429_INT_CheckChannelIntPending
	ADT_L1_A429_INT_DisableInt
	ADT_L1_A429_INT_EnableInt
	ADT_L1_A429_INT_GetIntSeqNum
	ADT_L1_A429_INT_IQ_ReadEntry
	ADT_L1_A429_INT_IQ_ReadNewEntries
	ADT_L1_A429_INT_IQ_ReadRawEntry
	ADT_L1_A429_INT_IQ_ReadNewRawEntries
	ADT_L1_A429_INT_SetIntSeqNum

	A429 Multichannel Receive Functions
	ADT_L1_A429_RXMC_BufferCreate
	ADT_L1_A429_RXMC_BufferFree
	ADT_L1_ A429_RXMC_ReadNewRxPs
	ADT_L1_ A429_RXMC_ReadRxP
	ADT_L1_ A429_RXMC_WriteRxP

	A429 Receive Functions
	ADT_L1_A429_RX_Channel_Init
	ADT_L1_A429_RX_Channel_Close
	ADT_L1_A429_RX_Channel_Start
	ADT_L1_A429_RX_Channel_Stop
	ADT_L1_A429_RX_Channel_ReadNewRxPs
	ADT_L1_A429_RX_Channel_ReadRxP
	ADT_L1_A429_RX_Channel_WriteRxP
	ADT_L1_A429_RX_Channel_CVTReadRxP
	ADT_L1_A429_RX_Channel_CVTWriteRxP
	ADT_L1_A429_RX_Channel_SetConfig
	ADT_L1_A429_RX_Channel_GetConfig
	ADT_L1_A429_RX_Channel_SetMaskCompare
	ADT_L1_A429_RX_Channel_GetMaskCompare
	ADT_L1_A717_RX_Channel_SetConfig
	ADT_L1_A717_RX_Channel_GetConfig

	A429 Transmit Functions
	ADT_L1_A429_TX_Channel_Init
	ADT_L1_A429_TX_Channel_Close
	ADT_L1_A429_TX_Channel_CB_TXPAllocate
	ADT_L1_A429_TX_Channel_CB_TXPFree
	ADT_L1_A429_TX_Channel_CB_Write
	ADT_L1_A429_TX_Channel_CB_Read
	ADT_L1_A429_TX_Channel_CB_TXPWrite
	ADT_L1_A429_TX_Channel_CB_TXPRead
	ADT_L1_A429_TX_Channel_Start
	ADT_L1_A429_TX_Channel_Stop
	ADT_L1_A429_TX_Channel_IsRunning
	ADT_L1_A429_TX_Channel_AperiodicIsRunning
	ADT_L1_A429_TX_Channel_SendLabel
	ADT_L1_A429_TX_Channel_SendLabelBlock
	ADT_L1_A429_TX_Channel_AperiodicSend
	ADT_L1_A429_TX_Channel_SetConfig
	ADT_L1_A429_TX_Channel_GetConfig
	ADT_L1_A429_TX_ChannelGetTxpCount

	A429 Signal Generator Functions
	ADT_L1_A429_SG_AddVectors
	ADT_L1_A429_SG_Configure
	ADT_L1_A429_SG_CreateSGCB
	ADT_L1_A429_SG_Free
	ADT_L1_A429_SG_Start
	ADT_L1_A429_SG_Stop
	ADT_L1_A429_SG_IsRunning
	ADT_L1_A429_SG_WordToVectors

	A429 Playback Functions
	ADT_L1_A429_TX_Channel_PB_Init
	ADT_L1_A429_TX_Channel_PB_Close
	ADT_L1_A429_TX_Channel_PB_CB_PXPAllocate
	ADT_L1_A429_TX_Channel_PB_CB_PXPFree
	ADT_L1_A429_TX_Channel_PB_CB_Write
	ADT_L1_A429_TX_Channel_PB_CB_Read
	ADT_L1_A429_TX_Channel_PB_CB_PXPWrite
	ADT_L1_A429_TX_Channel_PB_CB_PXPRead
	ADT_L1_A429_TX_Channel_PB_Start
	ADT_L1_A429_TX_Channel_PB_Stop
	ADT_L1_A429_PB_Start
	ADT_L1_A429_PB_Stop
	ADT_L1_A429_TX_Channel_PB_IsRunning
	ADT_L1_A429_TX_Channel_PB_SetConfig
	ADT_L1_A429_TX_Channel_PB_GetConfig
	ADT_L1_A429_TX_Channel_PB_RXPWrite

	The Layer 2 APIs
	Layer 2 API for Microsoft Windows .NET 2.0

	Appendix A – Microsoft Windows
	Windows Device Drivers
	Windows System Requirements
	Supported Alta Products
	Supported Compilers and Development Environments
	Installation of Alta Products
	Anti-Virus Note
	Windows Layer 0 API Files
	Windows Layer 1 API Files
	Layer 1 API Example Programs – **READ ME**
	Using MSVS 2005/2008/2010 C++ with the Layer 1 API
	Layer 1 .NET API Example Programs – **READ ME**
	Using MSVS 2005/2008 C# with the Layer 1 .NET 2.0 API
	Using LabWindows/CVITM with the Layer 1 API
	Using LabVIEWTM and LabVIEW Real-TimeTM with the Layer 1 API
	Using LabVIEWTM with the Layer 1 .NET 2.0 API
	Layer 1 .NET 2.0 API Classes and Methods
	CLASS_1553_CDP
	CLASS_1553_BC_CB
	CLASS_A429_RXP
	CLASS_A429_TXP
	ADT_L1

	Using AltaAPI with TenAsys INtime™
	Using AltaAPI with IntervalZero RTX™
	Installation
	Configure the Alta Board as an RTX Device
	Configuration for Interrupts
	Setup an RTX Application Project in MSVS

	Appendix B – Linux
	Linux distribution/kernel versions
	Supported Alta Products
	Supported C compilers
	Prior to installation
	Install version.h

	Installing AltaAPI
	Building and installing AltaDriver
	Building and Installing the Kernel PlugIn
	Building the AltaAPI Example Programs
	Uninstalling the Kernel PlugIn and Driver

	Appendix C – VxWorks
	Supported VxWorks Versions
	Supported Alta Products
	Supported Development Environments
	Hardware Installation
	System Configuration
	Software Installation
	Testing the Installation and L0 API
	Building and Testing the L1 API and Example Programs

	Appendix D – LynxOS
	Supported LynxOS Versions
	Supported Alta Products
	Supported C Compilers
	Hardware Installation
	Software Installation
	System Configuration
	Building and Testing the L0 and L1 API and Example Programs
	Note on Interrupts

	Appendix E – GHS INTEGRITY
	Supported INTEGRITY Versions
	Supported Alta Products
	Supported Development Environments
	Hardware Installation
	Kernel/Driver Configuration
	Software Installation
	Testing the Installation and L0 API
	Building and Testing the L1 API and Example Programs

	Appendix F – Solaris
	Supported Environments
	Supported Alta Products
	Installation on SPARC 64-bit systems
	Installing the Driver on SPARC 64-bit systems
	Installing the Kernel Plugin on SPARC 64-bit systems
	Building and Testing the API and Example Programs on SPARC 64-bit Systems
	Installation on x86 32-bit Systems
	Installing the Driver on x86 32-bit Systems
	Installing the Kernel Plugin on x86 32-bit Systems
	Building and Testing the API and Example Programs on x86 32-bit Systems

